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Machine learning technigues have led to broad adoption of a statistical model of computing. The
atatistical distributions natively available on quantum processors are a superset of those available
classically. Harnessing this attribute has the potential to accelerate or otherwise improve machine
learning relative to purely classical performance. A key challenge toward that goal is learning
to hybridize classical computing resources and traditional learning technigues with the emerging
capabilities of general purpose quantum proceszors. Here, we demonstrate such hybridization by
training a 19-qubit gate model precessor to solve a clustering preblem, a foundational challenge
in unsupervised learning, We use the quantum approximate optimization algorithm in conjunction
with a gradient-free Bayesian optimization to train the quantum machine. This quantum/classical
hybrid algorithm shows robustness to realistic noise, and we find evidence that classical optimization
can be uged to train around both coherent and incoherent imperfections.
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Clustering

Given an unlabeled set of
points, find labels based upon
similarity metric (e.g.
Euclidean distance).



Clustering Example - Recommender Systems

Netflix Customers
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Clustering as MAXCUT
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Construct a graph G=(V,E) where the
edge weights w, are determined by the
distance metric. Then, MAXCUT is a
clustering algorithm for the original
points.



Clustering as MAXCUT

Construct a graph G=(V,E) where the
edge weights w, are determined by the
distance metric. Then, MAXCUT is a
clustering algorithm for the original
points.

Clustering transformed into an
optimization problem.

MAXCUT = cuI’II:l.SE‘-I:}:{E Z Wij

(Lj)ES



MAXCUT as Energy Functional

‘Maximize disagreement on a colored graph’
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4-node ‘ring of disagrees”
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MAXCUT as Energy Functional

‘Maximize disagreement on a colored graph’
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MAXCUT as Energy Functional

‘Maximize disagreement on a colored graph’

[C}O 0O 00 | g

Score O Score O Score+1 J

4-node "ring of disagrees” Binary variable
g% gg O=1

Score O Score 2 O: O O-Z S {07 1}
Score 2 Score 4 (max)



MAXCUT as Energy Functional

max E w
2 2 cut SCE < *
2 2 l (2,5)€S
> = max E W; 07 0;



MAXCUT as Energy Functional

max E w
2 2 cut SCE < *
2 2 l (2,5)€S
> = max E W; 07 0;

Find the right bit-string assignment that maximizes the energy



QAOA - Quantum Approximate Optimization Algorithm

IDEA

Start at easy to prepare
initial state of energy
functional H,

‘Cool” the system until it
freezes in the low energy
state of H_



Discretize the Cooling Protocol

« Gate model of Optimization (Farhi, Goldstone, Gutman, arxiv:1411.4028)

V(B) = emioe

U(y) = e "7HP

e Angles 3, y need not be small

o How to find optimal B,y ?



Back to MAXCUT

o Initial state is ground state of H : | —>> = H®n|0>

e Runthe QAOA prescription:

B,7) =U()V(B)H®"(0)

o Intuitively: Superposition of bitstring configurations

B y? = \/pg% Jpﬁ%

Pl



Effects of the different Angles
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Effects of the different Angles

Angles change the  °*
probability to A
sample different %20 . B
bit strings
g ” E\l/ ) :,. . \\‘ !’,
Want to maximize fg E
the probabilityto = | / —
sample the 3 ,-' . / .
“correct” bitstring / \ :
0.05- -\‘ .',' /
i 2 3 4 5 6 7 8 9 0 11 2 13 14 15
angle pair trial number




Clustering Procedure

Cluster assignment
®

Euclidean
distance

Graph encoding Hamiltonian
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QAOA

B,7) =U(()V(B)H*"|0)

Measurement in
computational basis

0,1,0,0,0,1,...,1




Forest - Quil

Quantum instructions Quillol)
Quantum Instruction Language
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Forest - pyQuil
QAOA

In 14 lines of code

from pyquil.quil import Program

from pyquil.gates import H

from pyquil.paulis import sI, sX, sZ, exponentiate_commuting_pauli_sum
from pyquil.api import QVMConnection

graph = [(0, 1), (1, 2), (2, 3)]
nodes = range(4)

init_state_prog = sum([H(i) for i in nodes], Program())
h_cost = -9.5 * sum(sI(nodes[0]) - sZ(i) * szZ(j) for i, j in graph)
h_driver = -1. * sum(sX(i) for i in nodes)

def qaoa_ansatz(betas, gammas):
return sum([exponentiate_commuting pauli_sum(h_cost)(g) + exponentiate_commuting_pauli_sum(h_driver)(b) \
for g, b in zip(gammas, betas)], Program())

program = init_state_prog + qaoa_ansatz([@., ©.5], [0.75, 1.])

qgvm = QVMConnection()
gvm.run_and_measure(program, qubits=nodes, trials=10)




When are we done?

Entry

CPU

Create Quil with ]
selected parameters J

Output

Evaluate
termination

criterion

Analyze Samples
&
Evaluate real valued
objective function

QPU

Compile to
hardware

instructions

Play
instructions

|

( Measure

&
Record Sample
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Objective Function

e Loss/Reward Function:

o 0,1} > R 00 OO 00

Score O Score O Score+1

‘quality of a sampled bit-string”

o Find the optimal value of the Reward function:

(e]

(0]

No easy access to gradients, need derivative free methods
E.g. Bayesian Methods



Bayesian Optimization

—— process sample 1
o Assume objective —— progess sample 2
. . . 2 cess sample 3
function is Gaussian n
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Bayesian Optimization

—— process sample 1
o Assume objective ) —— progess sample 2
function is Gaussian n
e Measure and update :
Prior
S
Y
5
2o
>
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-1
-2
-4 -2 0 2 4
input 6



Bayesian Optimization

o Assume objective
function is Gaussian

e Measure and update
Prior

o (Choose next point to
measure and update

output f(6)

sample 2

sample 3
mean prediction

20

i '
-+ observations

-4



Bayesian Optimization

3 process sar Hﬁle-fl—
o Assume objective —— process sample 2

—— process sample 3

function is Gaussian |/ \ - mean prediction

2 20
-+ observatio

o Measure and update

Prior 1
S
Y-
« Choose next point to 3
measure and update 3 0
e Again
_1 /
_2 ‘
-4 -2 0 2 4
input 6



Bayesian Optimization

—— process sample 1

o Assume objective ~ process sample 2
. . . —— process sample 3
function is Gaussian I U S N A R mean prediction
N 20
-+ observations
o Measure and update 2
Prior
)
=
o (Choose next point to 3
measure and update 3
0
e Again
=1
[ ]
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input 6



Bayesian Optimization

—— process sample 1

o Assume objective 3 —— process sample 2
. . . —— process sample 3
function is Gaussian | —\ | mean prediction
20
2 -+ observations
o Measure and update
Prior
T 1
Y-
o (Choose next point to 3
measure and update 3 ,
e Again
-1
[ ]
-2
[ ]
-4 =2 0 2 4
input 6



That's how it looks in practice

At each step Clustering on 20Q - QVM

Sample a new angle pair from %0
the Gaussian prior

Run the Quil program and *Q*? ** " * ** ‘ H Q
sample several bitstrings 3”0

200

MaxCut cost

Evaluate the MAXCUT cost and
return maximum as the value

100

Update Prior and repeat the 0
proceSS 1 6 " 16 21

step




That's how it looks in practice

At each step Clustering on 20Q P=1 Optimizer Trace - QVM

g
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Keep the historic best value

2
8 400
5
Angles start to converge for % 350
=
La I’ge Ste pS num b ers 300 —8— observed optimal score
—8— current overall best score
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n
- B
- y
n/2
> o
o8

—nj2

-n

steps



Clustering on a 19-Q Chip

For demonstration purposes chose
problem instance to match chip

topology

%) v, B)

|
(a) 1 (b) ( (d)
: o o . cluster
= .\ 2 A o assignments
— . . - i )
‘O>®19 % NEN ? ; -/, (bit strings)
NN e _
i a7

Cost unitary A @
| :

Bayesian
optimizer l -
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Sz

SNNNN

Driver unitary

Measure




Putting it all together

Normalized Cost

11

16

21

26 31
steps

36

M

46

51

83 trial runs on the QPU

Algorithm finds the optimum
most of the time

Calculate success probability
from the traces



empirical CDF

Empirical performance
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step
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Success probability
monotonically increases with
number of steps.



empirical CDF

Empirical performance
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Success probability
monotonically increases with
number of steps.

Noise in 19Q has a significant
impact on performance.



empirical CDF

Empirical performance

1.0

0.8

19Q

—— Rigetti QVM
—— Empirical Random Bitstring Sampling
—— Exact Random Bitstring Sampling

step

Success probability
monotonically increases with
number of steps.

Noise in 19Q has a significant
impact on performance.

Approach clearly outperforms
random sampling.



Forest

Join our community Slack: Find us on Github:

slack.rigetti.com github.com/rigetticomputing
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Spare slides



Bloch Sphere

Lives on the surface of the Bloch sphere

2= |0)

—z=|1)

) = cos(6/2)]0) + ei¥sin(8/2)|1)



Quantum Control on the Bloch Sphere

"Machine that natively executes unitary operations on quantum systems’

Ry (7) |wo)

Unitaries are rotations

|wo) |0)
Rx(—11/2)|wo)
Ry (r1/2)|wo)
Rx(m)|wo)

X and Y rotations by driving

Z rotations by waiting



