
Unsupervised Machine Learning on a Hybrid Quantum Computer
Johannes Otterbach

Bay Area Quantum Computing Meetup - YCombinator
February 1 , 2018

Full Stack Quantum Computing

Quantum
Processor

ApplicationsHardware Cloud based Quantum
Operating System

19Q-Acorn available now

pyquil.readthedocs.io arXiv:1712.05771

8Q June 2017

19Q-Acorn available now

arXiv:1712.05771pyquil.readthedocs.io

8Q June 2017

Clustering

Given an unlabeled set of
points

Clustering

Given an unlabeled set of
points, find labels based upon
similarity metric (e.g.
Euclidean distance).

Clustering Example - Recommender Systems

1. Recommend action movies
2. Recommend RomComs

Netflix Customers

Watched the same movies

Construct a graph G=(V,E) where the
edge weights wi,j are determined by the
distance metric. Then, MAXCUT is a
clustering algorithm for the original
points.

Clustering as MAXCUT

MAXCUT =

3

3
2

2
2

5

1

2

41

Construct a graph G=(V,E) where the
edge weights wi,j are determined by the
distance metric. Then, MAXCUT is a
clustering algorithm for the original
points.

Clustering transformed into an
optimization problem.

Clustering as MAXCUT

MAXCUT =

3

3
2

2
2

5

1

2

41

MAXCUT as Energy Functional

“Maximize disagreement on a colored graph”

Score 0 Score 0 Score+1

4-node “ring of disagrees”

Score 0 Score 2

Score 2 Score 4 (max)

MAXCUT as Energy Functional

“Maximize disagreement on a colored graph”

Score 0 Score 0 Score+1

4-node “ring of disagrees”

Score 0 Score 2

Score 2 Score 4 (max)

= 1
= 0

Binary variable

MAXCUT as Energy Functional

“Maximize disagreement on a colored graph”

Score 0 Score 0 Score+1

4-node “ring of disagrees”

Score 0 Score 2

Score 2 Score 4 (max)

= 1
= 0

Binary variable

MAXCUT as Energy Functional

3

3
2

2
2

5

1

2

41

= 1
= 0

MAXCUT as Energy Functional

3

3
2

2
2

5

1

2

41

= 1
= 0

Find the right bit-string assignment that maximizes the energy

QAOA - Quantum Approximate Optimization Algorithm

IDEA

Start at easy to prepare
initial state of energy
functional HD

“Cool” the system until it
freezes in the low energy
state of HC

Discretize the Cooling Protocol
● Gate model of Optimization (Farhi, Goldstone, Gutman, arxiv:1411.4028)

● Angles β, ɣ need not be small

● How to find optimal β, ɣ ?

Back to MAXCUT

● Initial state is ground state of HD :

● Run the QAOA prescription:

● Intuitively: Superposition of bitstring configurations

| β, ɣ〉 √p1 √p2 √p16

Effects of the different Angles

Angles change the
probability to
sample different
bit strings

Effects of the different Angles

Angles change the
probability to
sample different
bit strings

Want to maximize
the probability to
sample the
“correct” bitstring

Clustering Procedure

Hamiltonian

Euclidean
distance

Graph encoding

QAOA

Measurement in
computational basis

Forest - Quil

Quantum instructions

 X q
 H q
 Z q
 CNOT p q
 MEASURE q [0]
 MEASURE p [1]

Quantum Instruction Language

X

H

Z

CNOT

MEASURE

Z

Forest - pyQuil
QAOA

In 14 lines of code

from pyquil.quil import Program
from pyquil.gates import H
from pyquil.paulis import sI, sX, sZ, exponentiate_commuting_pauli_sum
from pyquil.api import QVMConnection

graph = [(0, 1), (1, 2), (2, 3)]
nodes = range(4)

init_state_prog = sum([H(i) for i in nodes], Program())
h_cost = -0.5 * sum(sI(nodes[0]) - sZ(i) * sZ(j) for i, j in graph)
h_driver = -1. * sum(sX(i) for i in nodes)

def qaoa_ansatz(betas, gammas):
 return sum([exponentiate_commuting_pauli_sum(h_cost)(g) + exponentiate_commuting_pauli_sum(h_driver)(b) \
 for g, b in zip(gammas, betas)], Program())

program = init_state_prog + qaoa_ansatz([0., 0.5], [0.75, 1.])

qvm = QVMConnection()
qvm.run_and_measure(program, qubits=nodes, trials=10)

When are we done?

QPUCPU

Create Quil with
selected parameters

Analyze Samples
&

Evaluate real valued
objective function

Select
angles

Compile to
hardware

instructions

Play
instructions

Measure
&

Record Sample

Evaluate
termination

criterion

Entry

Output

Objective Function

● Loss/Reward Function:

“quality of a sampled bit-string”

● Find the optimal value of the Reward function:
○ No easy access to gradients, need derivative free methods
○ E.g. Bayesian Methods

Score 0 Score 0 Score+1

Bayesian Optimization

● Assume objective
function is Gaussian

Bayesian Optimization

● Assume objective
function is Gaussian

● Measure and update
Prior

Bayesian Optimization

● Assume objective
function is Gaussian

● Measure and update
Prior

● Choose next point to
measure and update

Bayesian Optimization

● Assume objective
function is Gaussian

● Measure and update
Prior

● Choose next point to
measure and update

● Again

Bayesian Optimization

● Assume objective
function is Gaussian

● Measure and update
Prior

● Choose next point to
measure and update

● Again

● …

Bayesian Optimization

● Assume objective
function is Gaussian

● Measure and update
Prior

● Choose next point to
measure and update

● Again

● …

● …

That’s how it looks in practice

At each step

Sample a new angle pair from
the Gaussian prior

Run the Quil program and
sample several bitstrings

Evaluate the MAXCUT cost and
return maximum as the value

Update Prior and repeat the
process

That’s how it looks in practice

At each step

Keep the historic best value

Angles start to converge for
large steps numbers

Clustering on a 19-Q Chip

For demonstration purposes chose
problem instance to match chip
topology

Putting it all together

● 83 trial runs on the QPU

● Algorithm finds the optimum
most of the time

● Calculate success probability
from the traces

Empirical performance

● Success probability
monotonically increases with
number of steps.

Empirical performance

● Success probability
monotonically increases with
number of steps.

● Noise in 19Q has a significant
impact on performance.

Empirical performance

● Success probability
monotonically increases with
number of steps.

● Noise in 19Q has a significant
impact on performance.

● Approach clearly outperforms
random sampling.

Forest

slack.rigetti.com

Join our community Slack:
github.com/rigetticomputing

Find us on Github:

Sign-Up @ rigetti.com/forest

QPU access @ rigetti.com/qpu-request

Thank you

More details in our pre-print arXiv: 1712.05771

Spare slides

Lives on the surface of the Bloch sphere

Bloch Sphere

“Machine that natively executes unitary operations on quantum systems”

Unitaries are rotations

X and Y rotations by driving Z rotations by waiting

Quantum Control on the Bloch Sphere

