
OQaml
A OCaml-based QASM

Johannes Otterbach

1



Turing Machine

2

● Alan Turing (1936)

● Led to the definition of Computability

● A program is representable by 
○ a finite set of states 
○ a set of transitions
○ a set of instructions
○ an initial state

https://www.researchgate.net/publication/228920087_Evolutionary_neural_networks_applied_in_first_person_shooters



FSM Representations

3

● Encode information in bits 0, 1

● Boolean Logic: Operations on bits
○ NOT : bit -> bit
○ OR : bit -> bit -> bit
○ AND : bit -> bit -> bit
○ XOR : bit -> bit -> bit
○ … 

● Universal gate sets:
○ NOT and AND
○ NOT and OR
○ AND or XOR
○ ...



Classic to Quantum

4

● Classical we can have only one state at a time:

● Quantum Mechanics:

Real values Complex values



State Transformation

5

● QM states connected by gates

● Computational basis

● Series of gates is a circuit

● “Time” flows from right to left



OQaml

6

● OCaml based implementation of Quil

● Statically typed, functional programming 
language

● Let’s you program with “mathematical” 
notation



Evaluating small circuits

7

● Structural similarity between CIRCUIT and GATE

● OQaml: Circuits are Gates!

● Example: 1 Qubit gates

OQaml:

let pg idx = Q.CIRCUIT [Q.PHASE (pi4); Q.RZ(pi4, idx); Q.RY (0.0, idx); Q.RZ (pi4, idx)];;



Demo

8



More examples

9

● 2 Qubit gate

● OQaml:
let swap i j = Q.CIRCUIT [Q.CNOT (i,j); Q.CNOT (j,i); Q.CNOT (i,j)];;

● Assert we are correct:
let tqvm = Q.apply (Q.X 0) (Q.init_qvm 2);;
Q.apply (swap 0 1) tqvm = Q.apply (Q.SWAP (0,1)) tqvm;;



Demo

10


