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Rigetti 8-Qubit Quantum Processor

> Scalable Gate-model Quantum Processors
> Superconducting Microwave Circuits

> Focus on near-term applications
> Quantum/Classical Hybrid Algorithms

> Build towards fault-tolerance

> Access over the cloud

> Quantum computers as co-processors



Rigetti 8-Qubit

Founded in 2013.b\[ / ' Faree AN T A
Chad Rigetti :

start

. R&D lab: Berkeley, (

Fab-1: Fremont, CA

-100 Employees Full-stack scala!:

superconducti
Forest: Quantum S
computing over the 30-qubit Quantu

cloud Virtual Machine



1 o0
i

Quantum

Processor

Full Stack Quantum Computing

Hardware

Cloud based Quantum Applications

Operating System



What do our Qubits
look like ?

~«= Superconducting circuits
“«- Operated near absolute zero
<= Aluminum on silicon

~« Microwave signal delivery







The world's first dedicated quantum processor fab - ’*%'QI'
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> Packaging > Cooling > Control Electronics



FOREST: Tools for experimental quantum programming

forest.rigetti.com

under Apache v2.0 license
> using tools.. DEVELOPMENT: pyQuil -
github.com/rigetticomputing/pyquil

> that build quantum QUANTUM |N5TRC§JL5;|—|ON LANGUAGE: _
programes... = Client

github.com/rigetticomputing/grove

> that compile onto

. Simulator in public-beta
quantum haraware...

Quantum HW

> that execute on a forest.rigetti.com

) QUANTUM VIRTUAL MACHINE /
real or virtual QUANTUM COMPUTER r

quantum processor.

Server

Robert Smith, Michael Curtis, William Zeng. A Practical Quantum Instruction Set Architecture. arXiv:1608.03355



Quantum Algorithms

Simulating quantum systems

1981
Original proposal by Feynman:
Simulating physics with computers

“The physical world is quantum mechanical, and
therefore the proper problem is the simulation of
quantum physics.”



Quantum Algorithms

1994
Shor's factoring algorithm (Shor)

1995
Phase Estimation (PE) introduced (Kitaev)

___________ 1997 Simulating quantum systems

Hamiltonian Simulation by PE (Lloyd)

----------- 2002 1981
Map of fermions to paulis (Somma) Original proposal by Feynman:
Simulating physics with computers
----------- 2005
Molecular ground states w/ PE (Aspuru-Guzik) “The physical world is quantum mechanical, and
therefore the proper problem is the simulation of
quantum physics.”
"""""" 2010

H, ground state using simulated QC (Whitfield)

----------- 2013
Hybrid Quantum-Classical Algorithms VQE (McClean)

2015
Approximate Combinatorial Optimization (Farhi)



Quantum Algorithms

1994
Shor's factoring algorithm (Shor)

1995
Phase Estimation (PE) introduced (Kitaev)

___________ 1997

Hamiltonian Simulation by PE (Lloyd) Molecular ground states w/ VQE

Implementation on a photonics processor
(Peruzzo)

----------- 2002
Map of fermions to paulis (Somma) L 2014
E Quantum Combinatorial Optimization (QAOA)
——————————— 2005 | (Farhi), eg. MAX-CUT, MaxE3Lin2
Molecular ground states w/ PE (Aspuru-Guzik) . L 2015

VQE + PE on superconducting qubits,

___________ 2010 Small quantum machine learning examples

H, ground state using simulated QC (Whitfield) (R - 2016

___________ 2013 E
Hybrid Quantum-Classical Algorithms VQE (McClean) :,

| Machine Learning (Aspuru-Guzik, Otterbach)
2015 ;

Approximate Combinatorial Optimization (Farhi)
TODAY

Simulating quantum systems
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Early years of superconducting qubits

Josephson junctions

Macroscopic coherence

(@ e |
Niobium T |wew2cH T\
yve (b) % 2 W\%
SnPh solder ¢ 2 f | ; I [ ST
1} 3 1 1 R B | Ok .
Copper > ‘-J \' \ } § 2z2fe) LT
8 £ 20
V l\ Current J5 in niobium wire ; I '\'\I‘Zd" |
+l5 518 2-3
3035 3046
1(uA)
J. Clarke, 1966 J. Martinis, M. Devoret, J. Clarke, PRB, 1987
Coherent control Qubit taxonomy
Dy
EJ'C" Cg |
OLEES .,
© L
e e Charge Flux Phase

Y. Nakamura et al., Nature, 1999
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Our Implementation

Circuit Quantum Electrodynamics (cQED)

e Superconducting circuits at very low
temps (0.01 Kelvin)

e Qubit = Circuit element made with
Josephson Junctions (JJ's)

Blais, cond-mat/0402216
»

Wallraff, cond-mat/0407325


https://arxiv.org/abs/cond-mat/0402216
https://arxiv.org/abs/cond-mat/0407325

cQED - the transmon qubit(s)

Josephson Junction - Cooper Pair Box
Transmon regime: Ej > E¢

JJ's are nonlinear
Nonlinearity—two-level subspace—qubit
Qubits coupled to linear resonators for
state readout

Jaynes-Cummings Hamiltonian:

Atomic transition coupled to cavity mode
Two types of transmons: Fixed & Tunable




Josephson Effect

[ TR AT

e [Fundamental commutation relation of cQED

[@,Q] = ih
e Equations of Motion
Ic = pa = —pp = Iosin(9)
qV

b= ba—b5 =10



Fixed SC Qubit

Capacitor Ic :C% = E(b 5
dt q -
Junction I; = I()SiIl(@)

Equation of motion

gq'é + Ipsin(¢) = I

Using Lagrangian formalism and fundamental
commutation relation to arrive at Hamiltonian

A Ib/\

H = Egn? — Ejcos(¢) — E;=—¢



Washboard and SC-Qubits

e Taylor expansion: Harmonic Oscillator

= Bon?+ gEJcoswo)(qB — $0)?

Energy [a.u.

Flux [a.u.]



Washboard and SC-Qubits

e Taylor expansion: Harmonic Oscillator

= Bon?+ gEJcoswo)(qB — $0)?

e Higher order correction: Anharmonic spectrum
e Ground- and st excited state form Qubit states
e Transmon Regime

Ly > Ec

D X =0

V coswt

Energy [a.u.]

b

Flux [a.u.]



Tunable SC Qubit T

| T
e Phase sensitive SQUID R Ec,
/JTl I EJT2
e Hamiltonian _;_

H = 4Ecﬁ2 — EJ1COS(¢E — (,Oext) _ EJZCOS(&E)

8 7

- . I — d=00

Symmetric junctions: £, =E, S — d=0.1
> — d=0.2 =

Phases cancel c d=0.3

= 3 — d=04
completely at @=@_/2 E al i i

i PR _ = — d=06

Asymmetric junctions: £, 1=E, s, s
Phases cancel o “r — d=038 ]

incompletely at \Ejy, — Ey,| — d=09
P=@,/2 = === 72 0 12 1

Ej + Ey,

Applied flux quanta

mage from M. Reed, Entanglement and Quantum Error Correction using Superconducting Qubits, 2013, arXiv:1311.6759 .
f.



Experimental Device

Flux bias line (FBL)

Tunable

transmon

RFport /

JosephSon
Junctions SQUID Loop




Parametric Entangling Gates

O(t) = D + D cos(wyt + 6,)
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Parametric Entangling Gates

O(t) = D + D cos(wyt + 6,)
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Parametric Entangling Gates

O(t) = D + D cos(wyt + 6,)

wr(t) & O (P) + o7(P) cos(2wpt + 26,)

20
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N
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flux bias ¢/



Parametric Entangling Gates
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Randomized Benchmarking

Image from Magesan

Interleaved RB
A. Run sequences of 2Q Cliffords
B. Run sequences with gate C interleaved

Attempt to isolate the infidelity due to C

Magesan _arXiv:1203.4550v2

Interleaved RB

Prob. of 00
[=]
=)

Two Qubit RB
With interleaved

Number of Cliffords

2Q gate type Avg error per 20Q gate
iSwap 5.9%
CZ,, 8.5%
CZ,, 8.7%



https://arxiv.org/abs/1203.4550v2

4 qubit entangled state verification

Quantum Circuit Quantum State Tomography

QST
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FSM & QAM

FSM

Classic Bits O and 1 encode the state
Universal Gate Sets

o NOT + AND
o NOT + OR
o AND + XOR

(@)

Execution state (next instruction)

QAM

e Qubits [0Yand 1)
e Universal Quantum Gate Set
o CNQOT + Single Qubit Gates

e (lassic Bits O and 1 encode the state
e Universal Gate Sets

o NOT + AND
o NOT + OR
o AND + XOR

O

e Execution state (next instruction)
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The Quil Programming Model

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> |t is a syntax for representing state transitions.



The Quil Programming Model

Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine
> |t is a syntax for representing state transitions.

W: Quantum state (qubits) — quantum instructions # Quil Example
C: Classical state (bits) — classical and measurement instructions H 3
K: Execution state (program)— control instructions (e.g., jumps) MEASURE 3 [4]

JUMP-WHEN @END [5]



The Quil Programming Model

Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine

> |t is a syntax for representing state transitions.

W: Quantum state (qubits) — quantum instructions
C: Classical state (bits) — classical and measurement instructions
K: Execution state (program)— control instructions (e.g., jumps)

O. Initialize into zero states

QAM: W, C,, K,

1. Hadamard on
qubit 3

# Quil Example

H 3

MEASURE 3 [4]
JUMP-WHEN @END [5]




The Quil Programming Model

Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine

> |t is a syntax for representing state transitions.

W: Quantum state (qubits) — quantum instructions
C: Classical state (bits) — classical and measurement instructions
K: Execution state (program)— control instructions (e.g., jumps)

O. Initialize into zero states

QAM: LI—’O, CD, Kq
1. Hadamard on Outcome 0
qubit 3 S
(wilcy k.
{LP1):0' K

Outcome 1

2. Measure qubit 3 q? C\
into bit #4 (._,3’( URE

# Quil Example
H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]



The Quil Programming Model

Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine

> |t is a syntax for representing state transitions.

W: Quantum state (qubits) — quantum instructions
C: Classical state (bits) — classical and measurement instructions
K: Execution state (program)— control instructions (e.g., jumps)

O. Initialize into zero states

# Quil Example
H 3
MEASURE 3 [4]

JUMP-WHEN @END [5]

QAM: W, (.. K,
1 quamard on Outcome O 3. Jump to end of program
qubit 3 — . — if bit #5 is TRUE
(v.AC K,
{LP1):0' K

Outcome 1

2. Measure qubit 3

=, B
into bit #4 (.L_P}’(EL"Z \

% i) \




Interacting with a Classical Computer

> The Quantum Abstract Machine has a shared classical state.
> The QAM becomes a practical device with this shared state.
> Classical computers can take over with classical/quantum synchronization.

C: Classical
Shared Memory 0/0/|0 1\ 0|0 1\ 0/ 0|0 /0 O/0(0|0]O0
(bItS) N ,\/\/ ///



Formal Details: The Quil White Paper

arXiv:1608.03355

A Practical Quantum Instruction Set Architecture

Robert S. Smith, Michael J. Curtis, William J. Zeng
Rigetti Computing
775 Heinz Ave.
Berkeley, California 94710
Email: {robert, spike, will}@rigetti.com

Abstract—Quantum computing technology has advanced IV Quil Examples 7
rapidly in the last few years. Physical systems—superconductin, .
an:Jits in particular—promise scalable gate-basl:d hardwareg. IV-A~ Quantum Fourier Transform . ... .. 7
Alongside these advances, new algorithms have been discovered & . . :
that gasre adapted to the relatively smaller, noisier hardware L Sétf;lEc Ay Tpleocnlkion, §F 8
that will become available in the next few years. These tend <=~ "~~~ "~~~
to be hybrid classical/quantum algorithms, where the quantum IV-B1 Static implementation . . . . 8
hardware is used in a co-processor model. Here, we introduce an
abstract machine architecture for describing these algorithms, IV-B2 Dynamic implementation . . 8
along with a language for representing computations on this
machine, and discuss a classically simulable implementation v A Quantum Programmillg Toolkit 9

architecture. Keywords—quantum computing, software architecture
V-A Overview . . . . ... ... ... ....



https://arxiv.org/abs/1608.03355

Quantum Teleportation in Quil

DEFCIRCUIT TELEPORT A q B:

Alice’s ancilla g

H A
CNOT A B :
Alice A
CNOT q A
- H q
. MEASURE q [0] Bob B

- MEASURE A [1]

JUMP-UNLESS @SKIP [1]
X B

LABEL @SKIP
JUMP-UNLESS @END [0]
Z B

LABEL @END

TELEPORT @ 1 5




Teleportation Truth Table

Bell State: |I00)+ [11)
Ancilla: al0)+ B IT)

State[ABq) |CNOTqA |Hq ClassicC-XAB ClassicC-ZgB
a |[000) a [000) |100),, (al0>+ B 1)), (0. 0],y alO>+ B 1D al0)+ B 11
B 1001) B 1101 1) pq (alD- B 10))g (1. 1), @l0)- B 11D al0)+ B 11
a [10) a [110) 107 5 (0l + B 1Y), (1. 0], €lO>+ B IT) ald)+ B 11
B 1111 B 1011) 013 (al0)- B 11D)g (0.1),y €lO-BIT) al0)+ B I




pyQuil generates Quil

from pyquil.gates import X, CNOT, H, Z, RX,

from pyquil.api import QVMConnection
from pyquil.quil import Program
import numpy as np

gvm = QVMConnection()

alice_register = 0
ancilla_register =1

flip_correction_branch = Program(X(1))
phase_correction_branch = Program(Z(1))

prog = (Program()
.inst(H(9@))
.inst(CNOT(@, 1))
.inst(RX(8.2 * np.pi, 2))
.inst(CNOT(2, 9@))
.inst(H(2))
.measure(B@, alice_register)
.measure(2, ancilla_register)

I

H o
CNOT 8 1

RX(pi/5) 2

CNOT 2 ©

H 2

MEASURE @ [@]
MEASURE 2 [1]
JUMP-WHEN @THEN1 [@]
JUMP @END2

LABEL @THEN1

X 1

LABEL @END2
JUMP-WHEN @THENS [1]
JUMP @ENDG

LABEL @THENS

71

LABEL @END6

.if_then(alice_register, flip_correction_branch)
.if_then(ancilla_register, phase_correction_branch))

gvm.run_and_measure(prog, list(prog.get_qubits()), trials=180)



Hybrid Quantum Computing

RX (%beta + pi/2) 1
MEASURE 0 [0] Measure update
into memory

MEASURE 1 [1]

Classical computation sets up and stores model, OPU operates on entire parameter space to
uses quantum data for expensive sub-algorithm get the search direction
Perform
_ ] quantum
Prepare expensive Load data measurement,
function call J onto qubits deposit update
direction into
memory
.
% DEFCIRCUIT QAOA (%$gamma, %beta)\
Select o RY (pi/2) 0
"h " 8 RY(pi/2) 1 Prepare
Vper :: CNOE 01 ~ quantum
parameters o RZ (sgamma) 1 data
= CNOT 0 1
g RX (%beta) 0
N
c
-
o]
N
<

Analyze QPU
results




Compilation

—————————————————————————————————————————————————————————————————————————

> Quil qubit labels to physical qubits

DEVELOPMENT: pyQuil > Roqtlng tq deal with t.wo-qublt gates i
> Optimization over noise and errors |

QUANTUM INSTRUCTION LANGUAGE:
Quil [ i

> Compilation into the natural gate set
> Rotation Decomposition

Scheduling

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER (g™ [ N

_________________________________________________________________________



Some useful tools

e QVM with up to 37 qubits (on AWS)
e Can simulate arbitrary 1 & 2 qubit noise by definition of Kraus maps
def damping_channel(p=.01):
damping_op = np.array([[@8, sqrt(p)],
(6, @ 11)
residual_kraus = np.diag([1, sqrt(1-p)])
return [residual_kraus, damping_op]

# overload identity gate I on qc @ with p=1% damping probability
p.define_noisy_gate("I", [8], damping_channel(0.01))
e Compilation layer
o  Specify arbitrary circuit and compile to natural gate set
Compression optimizations build in
Simple layout optimization: Quantum Circuit to Chip Topology
E.g. compiled RB circuit to identity

O O O

e Simple prototyping before requesting QPU
from pyquil.api import QVMConnection from pyquil.api import QPUConnection

cxn = QVMConnection() cxn = QPUConnection(“19Q-Acorn”)
cxn.run_and_measure(prog, ...) cxn.run_and_measure(prog, ...)



NISQ
Applications



NISQ - Near-term Intermediate Scale Quantum
Preskill, arXiv:1801.00862

| ]
| . 10
-25{ 't | Nature Comm. 54213 (2014) ; <
1 . 5
= | - 8
B —2.61 1 ~ o
£l Ak
| i 1
E;—Z? I 1 ! :
g : |- ¥ & T ,-:-T‘I' NET f 3o
28] ! =T a 02 ~
| [— Exact Eneray
294! = °°|  OMalley et al. (Google] -t
A R P ot T A L
= e £ 02l Phys. Rev. X 6, 031007 (2016)
[10]
Atmrmic £ —0.4 (/9: 0
=
>
2 —0.6 1
i
E —0.8 -
= —1.0 i =2t
Kandala et al. (IBM) 2753 1.0 15 2.0 25 30 W
Nature 549, 242 (2017) Bond Length R (Angstrom) H
L ~ fu] g g -1 - - ~ Il ~at o
éfu.z | L\J 472 g %U E-13s) %\u
I:{M | - o I; ‘f B 14 ] 5 = H
Iﬁ—u.:zl '\ ﬁ'?ﬁ ."‘..3_ A 48 ';
-1 I‘s. o 4 H .:““"-,r- *‘-'M:'-Eb'-?_'—: 5 . ——— ]
g0t 1 S b s
1.2 -8
0 2 3 4 1 4 5

Peruzzo et al. (Harvard Group)

Dumitrescu et al. (ORNL]
On IBM & Rigetti Hardware

1
Interatomic distance (Angstrom)

2 3
Interatomic distance (Angstrom)

Interatomic distance (Angstrom)

Otterbach et al. (Rigetti)
arXiv:1712.05771

0.8 —— Empirical Random Bitstring Sampling
’ —— Exact Random Bitstring Sampling

o
=2}

empirical CDF
o
~

=
L)

o
o

10 20 30 40 50
step


https://arxiv.org/abs/1801.00862

QAOA - Quantum Approximate Optimization Algorithm

h

Motivated through Adiabatic Quantum Computing
Encode solution to hard NP-complete problem in ground-state of H.
Start at easy to prepare initial state with Hamiltonian H,

o Typical examples are graph problems

H=(1—-7)Hp+717Hc 7€][0,1] o Traveling Salesman
o Portfolio Optimization (Knapsack)
e o N-SAT
o Sudoku (Exact Cover)
H, Hp = Za
HC = Z’wijO'izO'Jz- + Z hZO'zz
i)j i
HC




Trotterization

« Gate model of AQC (Farhi, Goldstone, Gutman, arxiv:1411.4028)

U :e—’i((l—T)HD—I—THc)t

— lim [e—i(l—T)HDt/pe—iTHct/p]p
pP— OO

o0
N | | o~ BpHp o—ivpHc

p=1

e Angles Bp, Y, need not be small

o Theory for p—o is exact; in practice small p is already good

« No specification on how to find optimal B, v,



Example: Maxcut

‘Maximize disagreement on a colored graph’

o0 OO OO

Score O Score O Score+1

4-node ‘ring of disagrees”

58

Score O Score 2

5L

Score 2 Score 4 (max)

55108




Example: Maxcut

o Initial state is ground state of H : | —>> = H®n|0>

e Runthe QAOA prescription:

B,v) =] UpVp H®"|0)

p=1

o Intuitively: Superposition of bitstring configurations

B y? = \/pg% Jpﬁ%



Probability distributions over bit strings

EE 55856

Cost Choice | B, Y,? Choice | B, ¥, Choice | B3 y3?
0 p=0.1 p =001 p=02

2 p=03 p=0.15 p = 0.01

2 p =005 p=02 p=00

4 p = 0.01 p = 0.51 p=025




(Weighted) Maxcut as Clustering

Cluster assignment.
o ® . ¢ . Graph encoding Hamiltonian
™ o ° > d P> 1
. @ o _ . z _z
° ° Eﬂj——EEZZ:UhJCl_‘Uin)
. » (%]
o ® ¢ o
o .ﬂ * ° ° 8 QAOA
. Ising Distance Matrix
h - f =
q2 L I| XRn
gi 6 13“7>__- ljpv; f[ |0>
Euclidean 36 p=1
. q7 5
distance a8 .
9 " Measurement in
gi% 3 computational basis
q = =
qi4
q 17|
q18
q19 1

O NOTONDDO — N LD O I~ 0O D
o fll o gl o gl s 8o il oo gt g o e S O SRR T O 0 r
s ie e Nododieeloloiay 0 »



When are we done?

Entry

CPU

Create Quil with ]
selected parameters J

Output

Evaluate
termination

criterion

Analyze Samples
&
Evaluate real valued
objective function

QPU

Compile to
hardware

instructions

Play
instructions

|

( Measure

&
Record Sample

|




Monthly global temperature anomaly + 12-months moving average in °C

Objective Function

e Loss/Reward Function:

| ‘ Fi J'
r' il }I
C/BJ"Y : {07 ]‘}n — R i {‘l f, ‘\l"* }Lr’ '

LTy

| F, "
o L i : ‘ \Ihfﬁ“l ‘wl‘,}lw L : . .
‘quality of a sampled bit-string” :f"\l”.]}"_“,'li‘\ | . |’;’| ||, . P l. i | L -
Y WK \" r, |
o Objective Function ))
. SEE @
f . X B,y 7 R, ]
(57 ’7) — STATC(C; 57 ')/) e Find the optimum of objective:

o No easy access to gradients, need
 Mean derivative free methods

o Nelder-Mead
B o Bayesian Methods

o Extreme values

o
Image from https://datagraver.com/case/world-temperature-anomalies-for-februari-2016



Bayesian Optimization

—— process sample 1
e (Gaussian Process Prior —— process sample 2
. . . 2 cess sample 3
of objective function n
1
S
Y
2
5 0
(@]
-1
=3
-4 -2 0 4
input 6



Bayesian Optimization

—— process sample 1

e (Gaussian Process Prior —— process sample 2
of objective function

e Measure and update

Prior

S
Y
5
S0
=}
(@]

-1

7

-4 -2 0 2 4
input 6




Bayesian Optimization

e (Gaussian Process Prior
of objective function

e Measure and update
Prior

o (Choose next point to
measure and update

output f(6)

sample 2

sample 3
mean prediction

20

i '
-+ observations

-4



Bayesian Optimization

3 process sample 1
e (Gaussian Process Prior —— process sample 2
. . . —— process sample 3
of objective functon /N = - svisain prediction
2 . 20
-+ observatio
o Measure and update

Prior 1
S
Y-
« Choose next point to 3
measure and update 3 0
e Again
_1 /
_2 ‘
-4 -2 0 2 4
input 6



Bayesian Optimization

—— process sample 1

e (Gaussian Process Prior —— process sample 2
. . . —— process sample 3
of objective function e mean prediction

N 20

-+ observations

o Measure and update 2
Prior
D
= 1
« Choose next point to 3
measure and update 3
0
e Again
=1
[ ]
-2
-4 -2 0 2 4
input 6



Bayesian Optimization

—— process sample 1

o (aussian Process Prior 3 —— process sample 2
. . . —— process sample 3
of objective functon | & - mean prediction
20
2 -+ observations
o Measure and update
Prior
T 1
Y-
o (Choose next point to 3
measure and update 3 ,
e Again
-1
[ ]
-2
‘ -4 =2 0 2 4
input 6



That's how it looks in practice

Fully Connected Graph for clustering

Noiseless Simulator (Rigetti QVM)

p=10QA0A

100

Clustering on 20Q - QVM

il

21

step

3




That's how it looks in practice

o Fully Connected Graph for clustering

. . . . \
o Noiseless Simulator (ngettl QVM, Clustering on 20Q P=1 Optimizer Trace - QVM
500
° p =1 Q AOA _ 450
§ 400
5
Q
é 350
=
300 —8— observed optimal score
—8— current overall best score
250 —e— observed average score
4 —— B
- y
nf2
> 0
Q.

-n/2

-n

steps



Clustering on a 19-Q Chip

« Chip topology requires smart gate sequence for
QAOA to execute all gates on a vertex

» Staggering gate applications according to
edge-coloring
|¢> v, 8)
(b) C(d)

—~
o
Sz

1
]
I cluster

:\' 2 K :/ : ﬁ ° E o  assignments
®19 \ N / i / * S § (bit strings)
A : T e
\. e a
Cost unitary L g

Bayesian
optimizer




Clustering on a 19-Q Chip

e Moderate coherence times
o« Moderate 20 fidelities
e Moderate readout fidelities

o Demonstration with chip specific
problem taylored to the topology

e Overlap problem similar to VLSI
design




Putting it all together

Normalized Cost

11

16

21

26 31
steps

36

M

46

51

83 trial runs on the QPU

p=1QAOQA, i.e. single application
of Uand V

Algorithm finds the optimum
most of the time

Calculate eCDF form the traces



empirical CDF

Empirical performance
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Empirical performance
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Success probability
monotonically increases with
number of steps.

Noise in 19Q has a significant
impact on performance.



empirical CDF

Empirical performance

1.0

0.8

19Q

—— Rigetti QVM
—— Empirical Random Bitstring Sampling
—— Exact Random Bitstring Sampling

step

Success probability
monotonically increases with
number of steps.

Noise in 19Q has a significant
impact on performance.

Approach clearly outperforms
random sampling.
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15 years of exponential performance improvement

Qubit Lifetime (ns)

10° . l . ;

7L [~ T1 3-D Cavity
101 |-=T12 3-D Cavities: B,

g | |~ Cavity
10
10°F T Flonum o __A

(Yale)
104 B 3-D Fluxonium
(Yale)

3 —

10 3-D Transmon
Transmon  (Yale)
10° F Sweet Spot  (Yale)
(Saclay/Yale)
1 01 Charge Echo
Nakamura  (NEC)
1 00 1 (NEC) 1 1 1
2000 2005 2010 2015
Year

M. Reagor thesis, 2015

Trends in “modern”
superconducting qubits:

> All (or mostly) RF control
> Dispersive readout
> 3D cavity resonators



Quantum Fourier Transform (QFT)

Discrete Fourier Transform (DFT)
Fourier conjugates ¢, p (vectors)

Vector: q = (qo, G1; -y gN—1)
Nis a power of two

Quantum Fourier Transform
Fourier conjugates |q), |p) (state vectors)
State:  [g) = go|0) + q1[1) + ... + gqn-1|N — 1)
(Basis vectors explicit)
Nis a power of two:
e N=2"with n qubits
Both:

DFT|q] =p
DFT|p] =q
QFT|q) = |p)
QFT|q) = |p)
Dp = L S q_ezm'jk/N
VN ’




Quantum Fourier Transform (QFT)

Quantum Fourier Transform N-1

e |sunitary v D
e |s faster than DFT

2mijk/N

2=
g

q;€

e Is animportant subroutine of other algorithms



Quantum Fourier Transform (QFT)

Quantum Fourier Transform

1 N-1
e Isunitary v D = ~ E :qj€2mgk/N
' J=0

e |s faster than DFT

e Is animportant subroutine of other algorithms

1) = qo]0) + q1|1) + ... + gn|N — 1) Decimal labels
= qo___00|0...00) —+ qO___01|O...01> + ... + Q11...1|11---1> Binar\/ labels



Quantum Fourier Transform (QFT)

Quantum Fourier Transform

e |sunitary v
e |s faster than DFT

e Is animportant subroutine of other algorithms

1 N-1
_ _2mijk/N
Pk = —F— q;c

1) = qo]0) + q1|1) + ... + gn|N — 1) Decimal labels
= qo___00|0...00) —+ qO___01|O...01> + ... + Q11...1|11---1> Binar\/ labels

Fact:
QFT|jn, s 1) =

1

\/2_71

(10 + ewn|1>) Q.. ® (|o> + ew1|1>)

On = 2m(51/2" + 52 /2" + ..+ 50/2)



Quantum Fourier Transform (QFT)

Concrete example: |¢) = |jsj271) = |101)

(pn = 27T(j1/2n +j2/2n_1 + ... +]n/2)




Quantum Fourier Transform (QFT)

Concrete example: |q) = |j3j271) = |101) on = 21(51/2" + §2/2" 4 L+ 4n/2)
_ L i2r(5/8) i2(1/4) i2n(1/2)
QFT|101) = @(\o>+62 58|1>)®(\o>+62 14|1>)®(|o>+e2 12|1>)



Quantum Fourier Transform (QFT)

Concrete example: |q) = |j3j271) = |101) on = 2m(51/2" + Jo /2" + .+ 50/2)
L i2n(5/8) i2(1/4) i2r(1/2)
QFT|101) = \/27(\0)4—6 2m(5/3 |1>)®(\o>+e 2m(1/4 |1))®(|0)—|—6 2m(1/2 |1>)
" [4)) = cos(6/2)|0) + e"sin(6/2)]1)
/‘\ |0L\ |0LJ\
e © (8 ® ([
/ ¥ \ AR y . C / y
\ = Il) _/ ) N )



Quantum Fourier Transform (QFT)

(pn = 27T(j1/2n +j2/2n_1 + ... +]n/2)

o) T E R (/) Ra (/)
o) : " R (n/2)

|J1) ¢ ; H




Quantum Fourier Transform (QFT)

(pn = 27T(j1/2n +j2/2n_1 + ... +]n/2)

CLgIO) + b3 1> 1 ' Rz(ﬂ'/Q) — Rz(ﬂ'//—i)
CLQ'D) + b9 1> l H —RZ(TT/Z)
CL1|O> +b1 1> @ l H




Quantum Fourier Transform (QFT)

(pn = 27T(j1/2n +j2/2n_1 + ... +]n/2)

CLgIO) + b3 1> 1 ' Rz(ﬂ'/Q) — Rz(ﬂ'//—i)
CLQ'D) + b9 1> Ib2 ? H TT/Z)
a1]0Y 4 by |1) lbl v




Quantum Fourier Transform (QFT)

bs on =21 (51/2" + 52/2" 7 4+ o+ G /2)
a3|0) + bs|1) | H | R.(7/2) [ R.(7/4) by
az|0) + ba|1) i Ib H | R:(m/2) by
CL1|O> + bl 1> L Ibl H




Quantum Fourier Transform (QFT)

b3 on = 2m(51/2" + G2/ 2"+ oo+ Gn/2)

as|0) + b3|1) | H [ R.(7/2) [ Rs(7/4) by
CLQ'O) + b9 1> Ib2 ? H TT/Q) ;

[t {2
CL1|O> =5 b1 1> H

1 N—1
_2mijk/N
— q,e
Fast Fourier Transform: @(77,2”)

Quantum Fourier Transform:

O (n?)




Quantum Fourier Transform (QFT)

Quantum Fourier Transform

e |sunitary v
e s faster than Fast Fourier Transform
e Is animportant subroutine of other algorithms

Fast Fourier Transform: @(nQ”)
Quantum Fourier Transform: O (n?)

Caveats:

e (antdirectly read out p,
— use as subroutine

e State preparation of |¢) is inefficient
— restricted to simple initial states




Quantum Fourier Transform (QFT)

Quantum Fourier Transform

1
e [sunitary v/ P = —F/—
e |[s faster than Fast Fourier Transform V N ()

e Is animportant subroutine of other algorithms

Fast Fourier Transform: @(n2n)
Quantum Fourier Transform: O (n?)

Caveats: QFT descendants:
e (antdirectly read out p, e Phase estimation
— use as subroutine e Order finding
e State preparation of |¢) is inefficient e Prime number factorization

— restricted to simple initial states
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Proof of principle
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Theory

Resonant frequencies
Fleos pese(t)] = F + f cos[2(wpt + 6,)], (34)
F=FOU0($p)] + 13(6) F P T0()]
+J3(0p)Ta(8p) O o (Dp)] + 3T3(8p) £ [To(p)] (35)
F==212(0p) {1 [To(bp)] + J4(8p) f P [To ()]

+ 332(0p) F ) [To ()] + %J%(&Fpm(ap)f“)[Jo(éﬁpn(}, |
36

Effective couplings

() _z 5 (@
911 J11dn ( 2y )

e Wy Wy,
2911 |:Jn—1( D ) + Jn+l ( pr )} ’ (41)

p
(n) _ — E"‘UJTEH
921 = g21Jn ( 2wp )
1= aTm aij
3921 [Jn—l( 2, ) + Jn+1 ( 2, )} 5 (42)

Didier & Rigetti arXiv:1706.06566
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https://arxiv.org/abs/1706.06566

Why do we need to schedule?

e Quil has no notion of time or synchronization.
« But time and synchronization are very important.
o What are our options?

Give up;
Admit the physicists are better

‘Program” with buttons and wires.

Include ad hoc
synchronization instructions

Extend Quil to *know” about time.

Compile Quil into some
temporal representation

Add machine-specific directives.

Pros:
e Maximal control
Cons:
e Difficult to reason about
e Nixes the idea of an
abstraction
e Difficult to automate
e Have to think about
hardware

Pros:

e Directly addresses the issue

e Still an abstract framework
Cons:

e Extremely complicated!
Difficult to reason about
Not easily extensible
Hard to implement
Loses the “essence”

Pros:
e Remains abstract
e Adds control as necessary
e Extensible!
e Keeps Quil “clean”

e Compilation is more difficult

e Performance
characterization is
machine-specific




Parametric entangling gates

iISWAP €z,&CZ,
Theory Experiment Theory Experiment Theory
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Parametric entangling gates
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Parametric entangling gates

TABLE II. Characteristics of the two-qubit CZ gates performed between neighboring qubit pairs (Qo, @Q1), (@1, @2), and
(Q2,Q3). g represents the qubit-qubit coupling, A11402 the detuning between |11) and |02), Ai120 the detuning between |11)
and |20}, wm the modulation frequency, éw the effective detuning of the tunable qubit under modulation, T3 ¢ the effective
coherence time of the tunable qubit under modulation, 7 the duration of the CZ gate, and Fgpr the two-qubit gate fidelity
measured by quantum process tomography. The symbol T denotes the transitions used for the gate.

Qublt pair 9/27[' AIIHOQ/QW Alleo/Qﬂ' ClJm/Zﬂ' 5(.0/27!' T;,eﬁ‘ T .FQPT
index (MHz) (MHz) (MHz) (MHz) (MHz) (us) (ns) %
Qo — 1 3.8 69.2F 315.0 83.3 281 3.8 278 95
Q1 — Q2 4.2 187.3F 180.1 82.9 338 3.0 353 93
Q2 — Qs 4.2 855.1 1240.31 199.9 257 5.2 395 91
a Ideal Process b Qo — O1 - Q1 - Q d Q2 — Q3 e
Fag=10 W |ix u Favg =0.95 w M Fag=0.93 MW |ix o Fag=091 W |ix 0.75
B | | 7 | B3 B | =
[ ] 1z 1z 1z ] iz 8 0.50
&1 X! | ] X1 | | X | | xi g
. " xv e o e o " s [%%
Xz z Z o=
) Yi :l Il :l . :ll 3 0.00
a " - o .. e a we |[-02s
ik Yz [ ] YZ n \74 = YZ Qo
| | 21 z1 2l u] 25 ~0.50
" z |y z | My z | " 2o
Wz Wzz | F74 Wz -0.75
D T W o e 37 SELIPFL PO SAD LY SETIPFEPDFL DY SFIIPFLPITL AP A0

Input Pauli Operator Input Pauli Operator Input Pauli Operator Input Pauli Operator

FIG. 3. Quantum process tomography. Process matrices of a, the ideal process, and CZ gates between b, Qo — (1, ¢,
Q1 — Q2, and d, Q2 — Q3. The achieved average fidelities are measured to be 95%, 93%, and 91%, respectively.

Reagor & Rigetti arXiv:1706.06570
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Analytical modeling of parametrically-modulated transmon qubits

June 20

Nicolas Didier, Eyob A. Sete, Marcus P. da Silva, and Chad|
Rigetti Computing, 775 Heinz Avenue, Berkeley, CA 9471
(Dated: June 21, 2017)

Sealing up quantum machines requires developing appropriate models to ur
their complex quantum dynamics. We focus on superconducting quantum

transmons for which full numerical simulations are already challenging at the 1d
thus highly desirable to develop accurate methods of modeling qubit networks th
on numerical computations. Using systematic perie bation theory to large md
regime, we derive precise analytic the transmon

to the case of parametrically-modulated transmons to study \eoemly-unplem
activated entangling gates.

I. INTRODUCTION In this paper, we appl
ory to model interacting
with respeet to mume
analyti i

crosstalk in the dispersi;
analytic expressions to 1
transmon qubits to realiz]

Scaling up quantum machines is a challenging enter-
prise that requires accurate modeling of complex quan-
tum dynamics. Precise understanding is crucial to de-
sign, manipulate, optimize, and verify the machine. In
the field of superconducting quantum computers, trans  uilar to other proposall
mons [L][2] are cwrrently widely used as qubits [F16] o B, Our theory has bed
quantum devices (1710, Transmons are weakly nonlin-  predicr and simulate iSW
car oscillators based on the Cooper pair bo. a JoScphson g 9_qubit [T5] and 8-qub
junction shunted by a capacitance, The transmon regime We start by presenting
corresponds to a large Josephson energy romp'sred to the
charging energy— it is a compromise between a large an-
harmonicity and a weak ity to charge noise. The

single s qubit in
case of tunable transmons|
itive coupling of transmon
tostudy fux modulation

inally di

stringent requirements of fault-toleral
puting II. FIXED-FREQUEN

The circuit of a fixed-f]
Josephson junction shunt

non-interacting transmons are
curate deseription for the b

n_of coupled systems  in Fig.[T] and is governed|
he transmons with P

arge rical diagonalization Hp =4E,
of these syst mes intractable because a
large mumby e necessary to obtain high

8 acting transmons. A more ef- F
ions of trans- e

Cooper-pair box H¥niltonian is achicved with Mathieu < —_
functions [21122, but manipulating them can be cunbe- Ee, |
some. For example, the Fourier o

Mathien fanctions, necessary to describe capacitive cou-
plings, leads to rather complex expressions. An alterna-
tive is to consider controlled approximations, such as the
approximate diagonalization via standard perturbation
theory, which is widely used in quantum mechanics [23).
For transmons, the natural small parameter is the ra-
tio of the charging energy of the Cooper-pair box to the
Josephson energy of the junction, as this parameter is
typically bellow 2%

FIG. 1. Circuit of a fixed-1
able transmon T that are
Transmons are characterized
Josephson energy Es. Th
pair bax corresponds to Ec|
composed of a SQUID and
bias line, Goxe (£).
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Parametrically-Activated Entangling Gates Using Transmon Qubits

S. Caldwell,* N. Didier," C. A. Ryan," E. A. Sete,* A. Hudson, P. Karalekas,
M. P. da Silva, R. Sinclair. E. Acala, N. Alidoust, J. Angeles, A. Bestwick, M. Bl
C. Bui, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S. Des
D. Girshovich, S. Hong, K. Kuang, M. Lenihan, T. Manning, J. Marshall, Y. Mol
J. Otterbach, A. Papageorge, J.-P. Paquette, M. Pelstring, A. Polloreno, G. Pr
R. Renzas. N. Rubin, D. Russell, M. Rust, D. Scarabelli, M. Scheer, M. Selvanay4
M. Suska, N. Tezak, T-W. To, M. Vahidpour, N. Vodrahalli, T. Whyland, K. Yad.

Rigetti Computing, 775 Heinz Avenue, Berkeley, CA 9471
(Dated: June 21, 2017)

We propose and implement a family of entangling qubit operations activated
flux pulses. By parametrically modulating the frecuency of a tunable transm
selectively actuate resonant exchange of excitations with a statically coupled,
resonant, neighboring transmon. This direct exchange of excitations between
need for mediator qubits or resonator modes, and it allows for the full utilizat
a scalable architecture. Moreover, we are able to activate three highly-selectiv,
sponding to two different classes of entangling gates that enable
an iSWAP and a controlled-Z rotation. This selectivity isg;\bl-:

pend both on frequency and amplitude, and is helpful in
architecture. We report average process fidelities of F = 0.9;
175 ns and 270ns controlled-Z operations.

One of the main challenges in building a scalable
superconducting quantum processor architecture is the
construction of a reliable two-qubit gate. There
two main approaches to achieving this goal using t
mons [1]. The first approach utilizes fixe
qubits with static coupling where the two-qu
ations are activated by applying transvers
drives [2-8]. While the fixed-frequency g
have long coherence times, this architect
ble m rmﬁmlk

es are activated by
e frequency differen
transmon states: [10) and|
(or 02)) for CZ. We de
a two-qubit device, but t
wardly to multi-qubit arc
we drive are highly selecti
depends both on the amy
as well as its frequen
desirable in multi-qubit s
to solving the problem of
Parametrically-activate
it gates can be realize|
e and letting them e
speed is then directly set.
cating transmon qubits wi
rather than a single Josel
quency to be tuned via an
the loop. The qubits ar
with a DC flux pulse to ac|
direction to meet the resof
sate for the frequency dett
23], akin to frequency co
ers [27]. We achieve this
the transmon qubit. frequ]
the pulse on the flux bias
To explain the physics o
qubit gates, we conside
qubit capacitively couple
as sketched in Fig. 1(a). |
est levels of the transmon

qubits into and out of
tion [9-12]. Howevy

a particular tr4
comes at the expense

tive to both of the approaches above relies
cally modulating couplings or energy levels

particular energy levels of interest [14-22]. This enables
an entangling gate between a qubit and a single res
onator [17, 18], a qubit and many resonator modes [22],
two transmon qubits coupled by a tunable mediating
qubit [12, 21], or two tunable transmens coupled to a
mediating resouator [19, 20]

Building on these earlier results, we implement two en-

arXiv:1706.06570v2 [quant-ph] 13 Jul 2017

Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

M. Reagor.* C. B. Osbomn, N. Tezak, A. Staley, G. Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier,
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S. Hong, A. Hudson, P. Karalekas, K. Kuang, M. Lenihan, R. Manenti, T. Manning, J. Marshall, Y. Mohan,
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Rigetti Computing, 7% Heinz Avenue, Berkeley, CA 94710
(Dated: July 14, 2017)

ow that parametric coupling techniques can be used to generate selective entangling inter
tions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits
under frequency modulation, we implement a universal gatesct for a lincar array of four supercon-
ducting qubits. An average proce: Ly 3% is estimated for three two-qubit gates via
quantum process tomography. We establish the suitability of these techniques fgg computation by
preparing a four-qubit maximally entangled state and comparing the estimated elity against
the expected performance of the individual entangling gates. In addition, wy
register in all possible bitstr
one pair of these qubits. Across all such permutations, an average fi
observed. These results thus offer a path to a scalable a\'dxiu‘(um

crosstalk.

ation of the same tunable transmon
4], Yet, despite these significant ad-
t to be an experimental assessment of
y of pamme-t.nc architectures with a multi-

All practical quantum computing architectures must
address the challenges of gate implementation at scale
Superconducting quantum  processors designed with
statie circuit parameters can achieve high coherence
times [L, 2| For these schemes, however, entangling
gates have come at the expense of always-on qubi
qubit couplings [3] and frequency crowding [4]
cessars based on tunable Josephson qubits, mean
can achieve minimal residual coupling and fast
qubit operations [3, G]: yet, these systems
come flux noise decoherence (7, §] and c
Dbasis leakage [9-12]. Moreover, the
both fixed-frequency and tunable qu

Wt qubits. We leverage the results of Refs. [23
show how the multiple degr frecdom for para-
vic drives can be used to resolve on-chip, multi-qubit
Fquency-crowding issues. For s four-qubit subarray of
the processor, we compare the action of parametric C:
gates to the ideal CZ gate using quantum proce:

s of fr

pounded as th mography (QPT) [25-27), estimating average gate fideli-
Lu[("s. [13, 14], however, ties [28, 29] of F = 95%, 93%. and 91%. Next, the
the fundamental challen, scalability of parametric entanglement is established by

puters. By using modi
log quantum proc
frequency-sel

statie, weakly

comparing the performance of individual gates to the ob-
served fidelity of a four-qubit maximally entangled state.
Further, we directly quantify the effect of the remaining
six qubits of the processor on the operation of a single
two-qubit CZ gate. To do so, we prepare each of the
experimentally verified in the last decade. Paramet- 64 classical states of the ancilla qubit register and, for
ric entangling gates have been demonstrated between  each preparation, conduct two-qubit QPT. Tracing ont
two flux qubits via frequency modulation of an anci the measurement outcomes of the ancillae results in an
lary qubit [13, 14]; between two transmon qubits via  average estimated fidelity of F = 91.6£2.6% to the ideal
AC Stark modulation of the computational basis [17]  Process of CZ. Our error analysis suggests that scaling to
A TOE S ional basis [18] with estimated  larger p through parametric modulation is read-

nteracting qubits.

Several proposals for parametric logic gates have been

gate fidelity of F= 81% [18]; between two fixed-frequency
transmon qubits via frequency modulation of a tunable
bus resonator with F=098% [19]; between high quality
factor resonators via frequency modulation of one tun-
able transmon [20-22] with F= [60 — 80)% [22]; and fi-
nally, between a fixed-frequency and tunable transmon

ily achiovable.
Figure La shows an optical image of the processor used
in our experiment. The multi-qubit lattice consists of al-

ternating tunable and fixed-frequency transmons, each
capacitively coupled to its two nearest neighbors to form
aring topology. This processor is fabricated on a high re-




What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
e (Generalizes universal classical computer
e Benefits from inherent size of Hilbert spaces
e Better performance on notable hard problems
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What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
e (Generalizes universal classical computer

e Benefits from inherent size of Hilbert spaces .
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What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
e (Generalizes universal classical computer

e Benefits from inherent size of Hilbert spaces .
Classical state Quantum state
e Better performance on notable hard problems
011 a000|000)
+1 qubit = 2x compute or memory ago1|001) +
e Addressable problem size aolﬂigﬁi T
. ap11 i
e Energy efficiency 0100/ 100 +
a101|101) =+
Interesting properties a110/110) +
e Fully reversible ajyi|111)
e No copying an arbitrary state

e Non-deterministic state readout ‘333231> = |jg> & ‘jz) 024 |jl>



One-qubit quantum state

Lives on the surface of the Bloch sphere

2= |0)

—z=|1)

) = cos(6/2)]0) + ei¥sin(8/2)|1)



Multi-qubit state

Arbitrary state ‘1&)

2= |0)

—z=|1) —-z= 1)

Larger Hilbert space is tensor product of smaller ones

a000|000
a001|001
a010|010
a011|011
a100/100
CL101|101
a110|110
a111|111

+++++++



Multi-qubit state

—2=1)

Basis states:

Arbitrary state ‘1&)

7= |0)

~2=|1)

|737271) = |73) @ |j2) ® |71)

(1000|000
a001|001
a010|010
a011|011
a100/100
CL101|101
a110|110
a111|111

+++++++



(1000|000

: : 1001
Multi-qubit state o
ap1|011

W) - a?;;uoo

CL101|101

Arbitrary state ‘1&) anol110

a111|111

+++++++

z=|0) 2= 0)

—z=[1) —&=|1) —z=[1)
Basis states: |]3]231> = |]3> & |]2> & |31>
General states: ‘¢> gé |¢3> ® ‘@DZ) ® |¢'1> (entanglement)



Controlling a quantum state

"Machine that natively executes unitary operations on quantum systems’

Unitaries are rotations
— o) |0) e  Qubit frequency f,
— Ry (—1/2)|wo)
—— Ry(1/2)|yo)
—— Rx(1)|go)
— Ry(m)|yo)

e  Qubit precesses in xy
(complex) plane at f,

e Xand rotations driven
with external fields

1)

X and Y rotations by driving Z rotations by waiting



