
Quantum Cloud Computing
Johannes Otterbach

TU Kaiserslautern
January 22, 2018

Rigetti 8-Qubit Quantum Processor

Rigetti 8-Qubit Quantum Processor

> Scalable Gate-model Quantum Processors
> Superconducting Microwave Circuits

> Focus on near-term applications
> Quantum/Classical Hybrid Algorithms

> Build towards fault-tolerance

> Access over the cloud
> Quantum computers as co-processors

Founded in 2013 by
Chad Rigetti

Fab-1: Fremont, CA

~100 Employees

Forest: Quantum
computing over the
cloud

Rigetti 8-Qubit Quantum Processor

Venture backed
startup

R&D lab: Berkeley, CA

Full-stack scalable
superconducting

qubits

30-qubit Quantum
Virtual MachineTM

Full Stack Quantum Computing

Quantum
Processor

ApplicationsHardware Cloud based Quantum
Operating System

What do our Qubits
look like ?

Superconducting circuits

Operated near absolute zero

Aluminum on silicon

Microwave signal delivery

die

chip

The world’s first dedicated quantum processor fab
Fremont, CA

The Chip

Signal Delivery

Superconducting quantum processors> Packaging > Cooling > Control Electronics

FOREST: Tools for experimental quantum programming

QUANTUM INSTRUCTION LANGUAGE:
Quil

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER

COMPILER

DEVELOPMENT: pyQuil

APPLICATIONS: Grove

Client

Server

> Write applications...

> using tools...

> that build quantum
 programs...

> that compile onto
 quantum hardware...

> that execute on a
 real or virtual
 quantum processor.

forest.rigetti.com

 Open-sourced on github
under Apache v2.0 license

github.com/rigetticomputing/pyquil

github.com/rigetticomputing/grove

Simulator in public-beta
Quantum HW

forest.rigetti.com

Robert Smith, Michael Curtis, William Zeng. A Practical Quantum Instruction Set Architecture. arXiv:1608.03355

Quantum Algorithms1990

2013

Simulating quantum systems

1981
Original proposal by Feynman:
Simulating physics with computers

“The physical world is quantum mechanical, and
therefore the proper problem is the simulation of
quantum physics.”

Quantum Algorithms1990

TODAY

1994
Shor’s factoring algorithm (Shor)

1995
Phase Estimation (PE) introduced (Kitaev)

1997
Hamiltonian Simulation by PE (Lloyd)

2002
Map of fermions to paulis (Somma)

2005
Molecular ground states w/ PE (Aspuru-Guzik)

2010
H2 ground state using simulated QC (Whitfield)

2013
Hybrid Quantum-Classical Algorithms VQE (McClean)

2015
Approximate Combinatorial Optimization (Farhi)

2013

Simulating quantum systems

1981
Original proposal by Feynman:
Simulating physics with computers

“The physical world is quantum mechanical, and
therefore the proper problem is the simulation of
quantum physics.”

Quantum Algorithms

Simulating quantum systems

1990

TODAY

1994
Shor’s factoring algorithm (Shor)

1995
Phase Estimation (PE) introduced (Kitaev)

1997
Hamiltonian Simulation by PE (Lloyd)

2002
Map of fermions to paulis (Somma)

2005
Molecular ground states w/ PE (Aspuru-Guzik)

2010
H2 ground state using simulated QC (Whitfield)

2013
Hybrid Quantum-Classical Algorithms VQE (McClean)

2015
Approximate Combinatorial Optimization (Farhi)

2013

TODAY

2013
Molecular ground states w/ VQE
Implementation on a photonics processor
(Peruzzo)

2014
Quantum Combinatorial Optimization (QAOA)
(Farhi), eg. MAX-CUT, MaxE3Lin2
2015
VQE + PE on superconducting qubits,
Small quantum machine learning examples

2016
Broader applications of VQE (Troyer, Rubin)

2017
Machine Learning (Aspuru-Guzik, Otterbach)

Transmons
&

2-Qubit Gates

Early years of superconducting qubits

J. Clarke, 1966

Josephson junctions

Charge Flux Phase

J. Martinis, M. Devoret, J. Clarke, PRB, 1987

Macroscopic coherence

Coherent control

Y. Nakamura et al., Nature, 1999

Qubit taxonomy

M. Devoret, A. Wallraff, J. Martinis, arXiv:0411174 (2004)

Circuit Quantum Electrodynamics (cQED)

● Superconducting circuits at very low
temps (0.01 Kelvin)

● Qubit = Circuit element made with
Josephson Junctions (JJ’s)

5.5mm

Aluminum circuit on Silicon

Blais, cond-mat/0402216
Wallraff, cond-mat/0407325

Our Implementation

https://arxiv.org/abs/cond-mat/0402216
https://arxiv.org/abs/cond-mat/0407325

cQED - the transmon qubit(s)

● Josephson Junction - Cooper Pair Box
● Transmon regime:
● JJ’s are nonlinear
● Nonlinearity→two-level subspace→qubit
● Qubits coupled to linear resonators for

state readout
● Jaynes-Cummings Hamiltonian:

Atomic transition coupled to cavity mode
● Two types of transmons: Fixed & Tunable

CPB

Josephson Effect

● Fundamental commutation relation of cQED

● Equations of Motion

● Capacitor

● Junction

● Equation of motion

● Using Lagrangian formalism and fundamental
commutation relation to arrive at Hamiltonian

Fixed SC Qubit

Washboard and SC-Qubits
● Taylor expansion: Harmonic Oscillator

Washboard and SC-Qubits
● Taylor expansion: Harmonic Oscillator

● Higher order correction: Anharmonic spectrum
● Ground- and 1st excited state form Qubit states
● Transmon Regime

● Hamiltonian

Tunable SC Qubit

● Phase sensitive SQUID

mage from M. Reed, Entanglement and Quantum Error Correction using Superconducting Qubits, 2013, arXiv:1311.6759

Asymmetric junctions: EJ1 != EJ2

Symmetric junctions: EJ1 = EJ2

Phases cancel
completely at ᷈=᷈0/2

Phases cancel
incompletely at

᷈=᷈0/2

Experimental Device

Flux bias line (FBL)

Current

Josephson
Junctions SQUID Loop

RF port

Tunable
transmon

00

10

01

11

20

02

Parametric Entangling Gates

00

10

01

11

20

02

Parametric Entangling Gates

00

10

01

11

20

02

Resonance when

for some ᵂ between levels i, j

Parametric Entangling Gates

iSWAP =

Resonance when

for some ᵂ between levels i, j

Parametric Entangling Gates

Magesan arXiv:1203.4550v2

Image from Magesan

2Q gate type Avg error per 2Q gate

iSwap 5.9%

CZ02 8.5%

CZ20 8.7%

Interleaved RB
A. Run sequences of 2Q Cliffords
B. Run sequences with gate C interleaved

Attempt to isolate the infidelity due to C

Randomized Benchmarking

https://arxiv.org/abs/1203.4550v2

4 qubit entangled state verification

Quantum Circuit Quantum State Tomography

Fidelity of 79%

Quil and the Quantum Abstract
Machine

A hybrid classical/quantum programming model.

FSM & QAM

● Classic Bits 0 and 1 encode the state
● Universal Gate Sets

○ NOT + AND
○ NOT + OR
○ AND + XOR
○ …

● Execution state (next instruction)

● Qubits |0〉and |1〉
● Universal Quantum Gate Set

○ CNOT + Single Qubit Gates

● Classic Bits 0 and 1 encode the state
● Universal Gate Sets

○ NOT + AND
○ NOT + OR
○ AND + XOR
○ …

● Execution state (next instruction)

FSM QAM

Quil is portable and hybrid.

The Quil Programming Model
Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on
qubit 3

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

Ψ2, C0, κ2

Ψ3, C1, κ2

1. Hadamard on
qubit 3

2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

Ψ2, C0, κ2

Ψ3, C1, κ2

...

...

Ψ2, C0, κ3

...

1. Hadamard on
qubit 3

3. Jump to end of program
if bit #5 is TRUE

2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Interacting with a Classical Computer
> The Quantum Abstract Machine has a shared classical state.
> The QAM becomes a practical device with this shared state.
> Classical computers can take over with classical/quantum synchronization.

Quantum Processor

H 0
CNOT 0 1
MEASURE 0 [7]
MEASURE 1 [3]
WAIT

C: Classical
Shared Memory
(bits)

Classical Processor

if C[3] + C[7] == 2:
 theta = 3*pi/7

...

continue_from_wait()
...

0 0 0 0 0 0 0 0 0 0 0 0 0 01 1

Formal Details: The Quil White Paper
arXiv:1608.03355

https://arxiv.org/abs/1608.03355

Quantum Teleportation in Quil

DEFCIRCUIT TELEPORT A q B:
Bell pair
H A
CNOT A B

Teleport
CNOT q A
H q
MEASURE q [0]
MEASURE A [1]

Classically communicate measurements
JUMP-UNLESS @SKIP [1]
X B
LABEL @SKIP
JUMP-UNLESS @END [0]
Z B
LABEL @END

If Alice’s qubits are 0 and 1
and Bob’s is 5
TELEPORT 0 1 5

Alice’s ancilla q

Alice A

Bob B

[0]

[1]

Teleportation Truth Table

State |A B q〉 CNOT q A H q Classic C-X A B Classic C-Z q B

α |000〉 α |000〉 |00〉Aq (α|0〉+ β |1〉)B [0, 0]Aq; α|0〉+ β |1〉 α|0〉+ β |1〉

β |001〉 β |101〉 |11〉Aq (α|1〉- β |0〉)B [1, 1]Aq; α|0〉- β |1〉 α|0〉+ β |1〉

α |110〉 α |110〉 |10〉Aq (α|1〉+ β |0〉)B [1, 0]Aq; α|0〉+ β |1〉 α|0〉+ β |1〉

β |111〉 β |011〉 |01〉Aq (α|0〉- β |1〉)B [0, 1]Aq; α|0〉- β |1〉 α|0〉+ β |1〉

● Bell State: |00〉+ |11〉
● Ancilla: α|0〉+ β |1〉

pyQuil generates Quil
from pyquil.gates import X, CNOT, H, Z, RX, I
from pyquil.api import QVMConnection
from pyquil.quil import Program
import numpy as np

qvm = QVMConnection()

alice_register = 0
ancilla_register = 1

flip_correction_branch = Program(X(1))
phase_correction_branch = Program(Z(1))

prog = (Program()
 .inst(H(0))
 .inst(CNOT(0, 1))
 .inst(RX(0.2 * np.pi, 2))
 .inst(CNOT(2, 0))
 .inst(H(2))
 .measure(0, alice_register)
 .measure(2, ancilla_register)
 .if_then(alice_register, flip_correction_branch)
 .if_then(ancilla_register, phase_correction_branch))

qvm.run_and_measure(prog, list(prog.get_qubits()), trials=10)

H 0
CNOT 0 1
RX(pi/5) 2
CNOT 2 0
H 2
MEASURE 0 [0]
MEASURE 2 [1]
JUMP-WHEN @THEN1 [0]
JUMP @END2
LABEL @THEN1
X 1
LABEL @END2
JUMP-WHEN @THEN5 [1]
JUMP @END6
LABEL @THEN5
Z 1
LABEL @END6

QPU operates on entire parameter space to
get the search direction

QPU

Hybrid Quantum Computing

CPU

Classical computation sets up and stores model,
uses quantum data for expensive sub-algorithm

Prepare expensive
function call

Analyze QPU
results

Select
“hyper”

parameters

Load data
onto qubits

Perform
quantum

measurement,
deposit update
direction into

memory

Repeat for accuracy

DEFCIRCUIT QAOA(%gamma, %beta)
RY(pi/2) 0
RY(pi/2) 1
CNOT 0 1
RZ(%gamma) 1
CNOT 0 1
RX(%beta) 0
RX(%beta + pi/2) 1
MEASURE 0 [0]
MEASURE 1 [1]

Prepare
quantum

data

Measure update
into memory

Compilation

QUANTUM INSTRUCTION LANGUAGE:
Quil

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER

Scheduling

DEVELOPMENT: pyQuil

Unitary Compilation

Allocation & Routing

> Quil qubit labels to physical qubits
> Routing to deal with two-qubit gates
> Optimization over noise and errors

> Compilation into the natural gate set
> Rotation Decomposition

> Scheduling into microcode

Some useful tools
● QVM with up to 37 qubits (on AWS)
● Can simulate arbitrary 1 & 2 qubit noise by definition of Kraus maps

def damping_channel(p=.01):
 damping_op = np.array([[0, sqrt(p)],
 [0, 0]])
 residual_kraus = np.diag([1, sqrt(1-p)])
 return [residual_kraus, damping_op]

overload identity gate I on qc 0 with p=1% damping probability
p.define_noisy_gate("I", [0], damping_channel(0.01))

from pyquil.api import QVMConnection

cxn = QVMConnection()
cxn.run_and_measure(prog, ...)

from pyquil.api import QPUConnection

cxn = QPUConnection(“19Q-Acorn”)
cxn.run_and_measure(prog, ...)

● Compilation layer
○ Specify arbitrary circuit and compile to natural gate set
○ Compression optimizations build in
○ Simple layout optimization: Quantum Circuit to Chip Topology
○ E.g. compiled RB circuit to identity

● Simple prototyping before requesting QPU

NISQ
Applications

Peruzzo et al. [Harvard Group]
Nature Comm. 5,4213 (2014)

O’Malley et al. [Google]
Phys. Rev. X 6, 031007 (2016)

Kandala et al. [IBM]
Nature 549, 242 (2017)

Dumitrescu et al. [ORNL]
On IBM & Rigetti Hardware
arXiv:1801.03897

Otterbach et al. [Rigetti]
arXiv:1712.05771

NISQ - Near-term Intermediate Scale Quantum
Preskill, arXiv:1801.00862

https://arxiv.org/abs/1801.00862

QAOA - Quantum Approximate Optimization Algorithm

● Motivated through Adiabatic Quantum Computing
● Encode solution to hard NP-complete problem in ground-state of HC
● Start at easy to prepare initial state with Hamiltonian HD

● Typical examples are graph problems
○ Traveling Salesman
○ Portfolio Optimization (Knapsack)
○ N-SAT
○ Sudoku (Exact Cover)

Trotterization
● Gate model of AQC (Farhi, Goldstone, Gutman, arxiv:1411.4028)

● Angles βp, ɣp need not be small

● Theory for p→∞ is exact; in practice small p is already good

● No specification on how to find optimal βp, ɣp

Example: Maxcut

“Maximize disagreement on a colored graph”

Score 0 Score 0 Score+1

4-node “ring of disagrees”

Score 0 Score 2

Score 2 Score 4 (max)

Example: Maxcut

● Initial state is ground state of HD :

● Run the QAOA prescription:

● Intuitively: Superposition of bitstring configurations

| β, ɣ〉 √p1 √p2 √p16

Probability distributions over bit strings

Cost Choice | β1, ɣ1 〉 Choice | β2, ɣ2 〉 Choice | β3, ɣ3 〉

0 p = 0.1 p = 0.01 p = 0.2

2 p = 0.3 p = 0.15 p = 0.01

2 p = 0.05 p = 0.2 p = 0.0

4 p = 0.01 p = 0.51 p = 0.25

(Weighted) Maxcut as Clustering

Hamiltonian

Euclidean
distance

Graph encoding

QAOA

Measurement in
computational basis

When are we done?

QPUCPU

Create Quil with
selected parameters

Analyze Samples
&

Evaluate real valued
objective function

Select
angles

Compile to
hardware

instructions

Play
instructions

Measure
&

Record Sample

Evaluate
termination

criterion

Entry

Output

Objective Function

● Loss/Reward Function:

“quality of a sampled bit-string”

Image from https://datagraver.com/case/world-temperature-anomalies-for-februari-2016

● Find the optimum of objective:
○ No easy access to gradients, need

derivative free methods
○ Nelder-Mead
○ Bayesian Methods
○ ...

● Objective Function

○ Extreme values
○ Mean
○ …

Bayesian Optimization

● Gaussian Process Prior
of objective function

Bayesian Optimization

● Gaussian Process Prior
of objective function

● Measure and update
Prior

Bayesian Optimization

● Gaussian Process Prior
of objective function

● Measure and update
Prior

● Choose next point to
measure and update

Bayesian Optimization

● Gaussian Process Prior
of objective function

● Measure and update
Prior

● Choose next point to
measure and update

● Again

Bayesian Optimization

● Gaussian Process Prior
of objective function

● Measure and update
Prior

● Choose next point to
measure and update

● Again

● …

Bayesian Optimization

● Gaussian Process Prior
of objective function

● Measure and update
Prior

● Choose next point to
measure and update

● Again

● …

● …

That’s how it looks in practice

● Fully Connected Graph for clustering

● Noiseless Simulator (Rigetti QVM)

● p=1 QAOA

That’s how it looks in practice

● Fully Connected Graph for clustering

● Noiseless Simulator (Rigetti QVM)

● p=1 QAOA

Clustering on a 19-Q Chip

● Chip topology requires smart gate sequence for
QAOA to execute all gates on a vertex

● Staggering gate applications according to
edge-coloring

Clustering on a 19-Q Chip

● Moderate coherence times
● Moderate 2Q fidelities
● Moderate readout fidelities

● Demonstration with chip specific
problem taylored to the topology

● Overlap problem similar to VLSI
design

Putting it all together

● 83 trial runs on the QPU

● p=1 QAOA, i.e. single application
of U and V

● Algorithm finds the optimum
most of the time

● Calculate eCDF form the traces

Empirical performance

● Success probability
monotonically increases with
number of steps.

Empirical performance

● Success probability
monotonically increases with
number of steps.

● Noise in 19Q has a significant
impact on performance.

Empirical performance

● Success probability
monotonically increases with
number of steps.

● Noise in 19Q has a significant
impact on performance.

● Approach clearly outperforms
random sampling.

Forest

slack.rigetti.com

Join our community Slack:
github.com/rigetticomputing

Find us on Github:

Sign-Up @ rigetti.com/forest

QPU access @ rigetti.com/qpu-request

Thank you

More details in our pre-print arXiv: 1712.05771

Spare slides

15 years of exponential performance improvement

Trends in “modern”
superconducting qubits:

> All (or mostly) RF control
> Dispersive readout
> 3D cavity resonators

M. Reagor thesis, 2015

Discrete Fourier Transform (DFT)
Fourier conjugates (vectors)
Vector:
N is a power of two

Quantum Fourier Transform (QFT)

Both:

Quantum Fourier Transform
Fourier conjugates p & q (state vectors)
State:

(Basis vectors explicit)
N is a power of two:

● N=2n with n qubits

Quantum Fourier Transform (QFT)

Quantum Fourier Transform
● Is unitary ✔
● Is faster than DFT
● Is an important subroutine of other algorithms

Quantum Fourier Transform (QFT)

Quantum Fourier Transform
● Is unitary ✔
● Is faster than DFT
● Is an important subroutine of other algorithms

Decimal labels
Binary labels

Quantum Fourier Transform (QFT)

Quantum Fourier Transform
● Is unitary ✔
● Is faster than DFT
● Is an important subroutine of other algorithms

Decimal labels
Binary labels

Fact:

Quantum Fourier Transform (QFT)

Concrete example:

Quantum Fourier Transform (QFT)

Concrete example:

Quantum Fourier Transform (QFT)

Concrete example:

Quantum Fourier Transform (QFT)

Quantum Fourier Transform (QFT)

Quantum Fourier Transform (QFT)

Quantum Fourier Transform (QFT)

Quantum Fourier Transform (QFT)

Fast Fourier Transform:
Quantum Fourier Transform:

Quantum Fourier Transform (QFT)

Quantum Fourier Transform
● Is unitary ✔
● Is faster than Fast Fourier Transform
● Is an important subroutine of other algorithms

Fast Fourier Transform:
Quantum Fourier Transform:

Caveats:
● Can’t directly read out pk

→ use as subroutine
● State preparation of is inefficient

→ restricted to simple initial states

Quantum Fourier Transform (QFT)

Quantum Fourier Transform
● Is unitary ✔
● Is faster than Fast Fourier Transform
● Is an important subroutine of other algorithms

Fast Fourier Transform:
Quantum Fourier Transform:

QFT descendants:
● Phase estimation
● Order finding
● Prime number factorization

Caveats:
● Can’t directly read out pk

→ use as subroutine
● State preparation of is inefficient

→ restricted to simple initial states

Proof of principle

Flux pulse (RF)
Sweep duration Readout

Readout

Prepare |1>

Prepare |0>Fixed

Tunable

Proof of principle

Flux pulse (RF)
Sweep duration Readout

Readout

Prepare |1>

Prepare |0>Fixed

Tunable RO

RO

Prep
|1>

Prep
|0>

Fixed

Tunable Flux Flux

Vary
Wait

Proof of principle

Flux pulse (RF)
Sweep duration Readout

Readout

Prepare |1>

Prepare |0>Fixed

Tunable RO

RO

Prep
|1>

Prep
|0>

Fixed

Tunable Flux Flux

Vary
Wait

May 12

May 16

Theory

Didier & Rigetti arXiv:1706.06566

Resonant frequencies

Effective couplings

https://arxiv.org/abs/1706.06566

Why do we need to schedule?
● Quil has no notion of time or synchronization.
● But time and synchronization are very important.
● What are our options?

Include ad hoc
synchronization instructions

Extend Quil to “know” about time.

Give up;
Admit the physicists are better

“Program” with buttons and wires.

Compile Quil into some
temporal representation

Add machine-specific directives.

Pros:
● Directly addresses the issue
● Still an abstract framework

Cons:
● Extremely complicated!
● Difficult to reason about
● Not easily extensible
● Hard to implement
● Loses the “essence”

Pros:
● Maximal control

Cons:
● Difficult to reason about
● Nixes the idea of an

abstraction
● Difficult to automate
● Have to think about

hardware

Pros:
● Remains abstract
● Adds control as necessary
● Extensible!
● Keeps Quil “clean”

Cons:
● Compilation is more difficult
● Performance

characterization is
machine-specific

Parametric entangling gates

Theory TheoryExperiment ExperimentTheory
iSWAP CZ02 & CZ20

Caldwell & Rigetti arXiv:1706.06562

https://arxiv.org/abs/1706.06562

Parametric entangling gates

TheoryExperiment

Caldwell & Rigetti arXiv:1706.06562

https://arxiv.org/abs/1706.06562

Parametric entangling gates

Reagor & Rigetti arXiv:1706.06570

https://arxiv.org/abs/1706.06570

Forest 1.0
Theo

ry

Dem
on

str
at

io
n Integ

ra
tio

n

June 20

What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
● Generalizes universal classical computer
● Benefits from inherent size of Hilbert spaces
● Better performance on notable hard problems

Quantum stateClassical state

What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
● Generalizes universal classical computer
● Benefits from inherent size of Hilbert spaces
● Better performance on notable hard problems

+1 qubit = 2x compute or memory
● Addressable problem size
● Energy efficiency

Quantum stateClassical state

What is a quantum computer?

Machine that natively executes unitary operations on quantum systems
● Generalizes universal classical computer
● Benefits from inherent size of Hilbert spaces
● Better performance on notable hard problems

+1 qubit = 2x compute or memory
● Addressable problem size
● Energy efficiency

Interesting properties
● Fully reversible
● No copying an arbitrary state
● Non-deterministic state readout

Quantum stateClassical state

One-qubit quantum state

Lives on the surface of the Bloch sphere

Multi-qubit state

Arbitrary state

Larger Hilbert space is tensor product of smaller ones

Multi-qubit state

Basis states:

Arbitrary state

Multi-qubit state

Basis states:

General states: (entanglement)

Arbitrary state

“Machine that natively executes unitary operations on quantum systems”

Unitaries are rotations

Controlling a quantum state

X and Y rotations by driving Z rotations by waiting

● Qubit frequency fq

● Qubit precesses in xy
(complex) plane at fq

● X and Y rotations driven
with external fields

