
NAM-CAM: Neural-Additive Models for
Semi-Analytic Descriptions of CAM Simulations

Konstantin Ditschuneit1[0000−0002−1120−1030], Adem Frenk1,
Markus Frings2[0000−0001−9096−939X], Viktor Rudel3,

Stefan Dietzel1[0000−0002−4192−0327],
Johannes S. Otterbach1[0000−0002−7404−2321]

1 Merantix Momentum, Berlin, Germany
2 ModuleWorks, Aachen

3 Fraunhofer IPT, Aachen
{konstantin.ditschuneit, johannes.otterbach}@merantix.com

Abstract. Computer-Aided Manufacturing (CAM) is an iterative, time-
and resource-intensive process involving high computational costs and
domain expertise. The exponentially large CAM configuration space is a
major hurdle in speeding up the CAM iteration process. Existing meth-
ods fail to capture the complex dependency on CAM parameters. We
address this challenge by proposing a new element for the engineer’s
design workflow based on an explainable artificial intelligence method.
Using Neural-Additive Models (NAMs), we create a semi-analytic model
that improves guided search through the configuration space and reduces
convergence time to an optimal CAM parameter set. NAMs allow us to
visualize individual parameter contributions and trivially compute their
sensitivity. We demonstrate the integration of this new element into the
CAM design process of a blade-integrated disk (blisk). By visualizing
the learned parameter contributions, we successfully leverage NAMs to
model the dependency on CAM parameters.

Keywords: Computer-Aided Manufacturing, blisk, interpretable ma-
chine learning, XAI, Neural-Additive Models

1 Introduction

With the advance of modern manufacturing technologies, designing new tech-
nical components becomes increasingly more complex. While planning the ma-
chining process of these components, engineers make extensive use of Computer-
Aided Manufacturing (CAM) systems. Typical CAM-based simulation workflows
consist of multiple subsequent steps, such as (1) tool path calculation; (2) tool
engagement simulation; and (3) cutting force simulation. CAM designers visu-
ally inspect the tool path w.r.t. tool accelerations, trajectory and tool orientation
smoothness, and general machinability of the part and adapt the CAM param-
eters accordingly. However, a typical CAM parameter space consists of around
50 parameters. When testing just 3 independent settings for each parameter,



the total number of configurations to calculate is 350 ≈ 7.2e23, rendering an
exhaustive search of this configuration space infeasible. A major limiting factor
is the simulation of relevant process variables, such as the cutting force, using
CAM-integrated technology models. Especially, the dexel-based tool engagement
simulation makes the workflow expensive, as it requires high tool path and part
resolutions. Consequently, human intuition plays a significant role in guiding the
exploration. However, the individual steps in the CAM workflow commonly run
for multiple hours on modern computers, and engineers often spend long hours
optimizing CAM parameters by hand and abort once a satisfactory result is
achieved.

Fig. 1. (Left) Learned parameter importance αd (see Equation 1) for targets toolpath
length (red) and force proxy (blue). The plots reveal that some parameters have negligi-
ble contributions overall, e.g., MaxSideTilt, while BladeOffset and DistBetweenLayers
are influential for both targets. (Right) 3D sketch of a blisk with the toolpath in blue
and the machining tool head in yellow.

In recent years, the success of advanced Machine Learning (ML) techniques,
have been extended from traditional applications, e.g., computer vision and nat-
ural language processing, to new domains, such as physical system [3,8,23] or
engineering [17,19,26]. We add to this research by introducing a new design step
that can be integrated into the engineer’s workflow, based on NAMs [1,15], an
explainable artificial intelligence technique. Studying the challenging machine
planning process of blade-integrated disks, or blisks (see Fig. 1 left), we show
that NAMs can assist in the guided search of the CAM parameter space. NAMs
constitute a semi-analytic model of the CAM simulation, due to leveraging mod-
ern auto-differentiation frameworks. The architecture of NAMs allows to easily
visualize the parameter-contributions to the quantity of interest and facilitates
further analyses, such as sensitivity analysis, intuition checks, and insights into
the simulation dynamics. The interpretability features enable engineers to as-
sess the quality of the final model and guide them in their experimentation and
search for optimal CAM parameter settings. Finally, NAMs allow for further au-



tomation and multi-target optimization when turning the quantities of interest
into a corresponding optimization metric.

2 Related Work

Artificial Intelligence (AI) in manufacturing. The study of AI-based meth-
ods to optimize manufacturing processes is not new [22]. Most works are based
on a variety of zero-order optimization routines [14,25,27], while artificial neu-
ral networks have received considerably less attention and are focused on path
optimization problems [29].

Interpretable models for tabular data. The parameter dependency of
the CAM simulation can be expressed as tabular data. In practice, tabular data
are often modeled using linear models, such as regressions or discriminant anal-
ysis [13]. Linear models require hand-engineered features to achieve good per-
formance, making them time-consuming to build. To increase the expressivity
of such models, Generalized Additive Models (GAMs) [9] have been introduced
to model non-linear but still univariate regressions. The non-linear dependencies
are often modeled with tree-based models, such as xgboost [16]. While these
tree-based GAMs are powerful, they are not differentiable, making any analysis
cumbersome. In contrast, NAMs [1] cover the full expressivity of GAMs while
also being fully differentiable. This allows for different types of analyses and op-
timizations. Moreover, NAMs, being neural network-based algorithms, benefit
from modern accelerators, such as Graphics Processing Units (GPUs), due to
their matrix-multiplication parallelism.

3 Neural-Additive Models

NAMs are instances of GAMs [9]. This model class uses non-linear univariate
functions to approximate the quantity of interest. Let D = {(xi, yi)}i=1,...,N

be a dataset of N samples, with xi ∈ RD denoting the independent variables
and yi ∈ RK the target variable. For a simple regression, K = 1, but we also
investigate multi-target regressions with K > 1, which enables us to re-use
parameters in a multi-target regression. We express the relationship between
dependent and independent variables as

ỹi = α0 +

D∑
d=1

αd φd

(
xi,d − µd

σd

)
, (1)

where φd is a non-linear function, the shape function, of the d-th component of
vector xi, and αd are parameters that are determined numerically. Note that
we normalize the input data using a component-wise shift µi and scale σi. The
tilde indicates that this is the approximated value and not the ground truth
value. In the NAM setting, we replace the functions φd with neural networks,
i.e., φd(·) = NN[θθθd](·), where θθθd are the trainable parameters of the d-th com-
ponent. To train the NAM, we make use of the mean squared error (MSE)



defined as LMSE = Exi∈D

[
‖ỹi − yi−µy

σy
‖2
]
, where we also scale the target vari-

able for numerical stability. Minimizing LMSE w.r.t. the family of parameters
{θθθd}d=1,...,D and {αd}d=0,...,D results in shape functions that capture the influ-
ence of the input variables onto the target quantity. A generalization of model 1
to multivariate shapes for higher-order interactions is straight-forward [15]. This
increases the expressivity of the model but reduces the interpretability due to
higher-dimensional shape functions.

Sensitivity analysis. Using neural networks as shape functions φd makes
model 1 fully differentiable. This allows us to compute and visualize local sensi-
tivity measures defined via the first derivative

sd(x0) =

∣∣∣∣ ∂y∂xd
∣∣∣∣
x0

. (2)

We can define a global sensitivity measure by computing, for instance, the maxi-
mum local sensitivity over a bounded value range. This assumption is acceptable,
as most input parameters in a CAM system have a finite range.

Uncertainty assessment for the shape functions. The interpretability
properties of univariate NAMs offer the added benefit of visualizing the uncer-
tainty of the shape functions. For small- to medium-sized datasets, fitting a NAM
is fast. This allows for several strategies to create uncertainty estimates, e.g.,
bootstrapping [13], ensemble learning [13], Bayesian dropout [11], or randomized
NAM initialization. Independent of the specific choice, any of these methods re-
sults in varying shape functions to assess uncertainty. Using human assessment,
the engineer can determine whether additional experiments are needed.

4 Experiments

4.1 CAM Toolpath Calculation and Force Predictions

For the CAM workflow, we use the ModuleWorks SDK. The toolpath is cal-
culated with the MultiBlade component, while the engagement simulation
utilizes the CutSim component. Simulations can be done using mesh-based [12]
or dexel-based approaches, such as tri-dexel models [4] used here. Compared
to mesh-based methods, memory consumption grows moderately with growing
complexity of the mechanical part. However, due to its discrete representation,
the dexel-method misses features smaller than the dexel distance and requires
an increased dexel resolution. To save computational costs, a buffered-cuts sim-
ulation approach is used. Therefore, the tool movement over several steps is
summed up before updating the in-process workpiece (IPW) by intersecting the
swept volume of the tool and the old IPW.

To calculate forces on the tool, the cutter-workpiece engagement (CWE) is
required in combination with a mechanistic cutting force model [2,6,7]. We follow
a strategy based on a detailed 3D tool shape model [6]. However, accurate force
estimates are at odds with the buffering, as fine-grained geometry updates are
needed. This makes the computation slow.



Fig. 2. Shape functions of the learned NAMs for both targets (top: force proxy, bot-
tom: toolpath length). Shapes for the force proxy show almost linear correspondence,
while the shapes for the toolpath length are non-linear. NAMs are clearly capable of
simultaneously learning both simple and complex correlations. The uncertainty bands
are derived from ensemble learning and correspond to 1σ standard deviation for shape
functions and sensitivity. Please note the differences in scale for the different curves.
The black stripes mark individual feature values in the dataset to indicate the density
of data values.

4.2 Dataset Generation and NAM Training

To generate the dataset, we use Docker [21] to containerize the ModuleWorks
SDK. Alternatively, the CAM simulator can also be accessed via an internet-
based API endpoint. Either setup allows abstracting the underlying operating
system and running jobs on any hardware. We use Kubernetes [20] to orchestrate
the workflow and automate it using Flyte [10] in conjunction with a Hydra
entrypoint [28].

With this setup, we simulate the blisk toolpath using a set of initial pa-
rameters. We parallelize the dataset simulation by horizontally scaling the en-
vironment. For each simulation, we record the complete trajectory of the path,
including the tool immersion angles, slices, and so forth. We are interested in
minimizing the average absolute force between the tool and the workpiece during
the cutting process over all points on the toolpath. Since we do not have access
to the exact force calculation, we use an empirically tested proxy metric based
on the sum of the cut-intersection surface area at,k between the component and

cutting edge of the tool t: F̃t =
∑3
k=1 at,k.

4.3 Experiment Design

Dataset. We ran the CAM workflow for 128 different parameter configurations
sampled uniformly at random. We collect the parameters and the corresponding
target metrics as rows in our tabular dataset. The data consists of 8 independent
parameters and 2 target metrics. We randomly split the dataset into a training



(80%), a validation (10%), and a test (10%) dataset. To fit the NAM, we normal-
ize the target metrics to be mean-centered and to have a unit standard deviation
and the input variables to lie within the [0, 1] range. To estimate the shift and
scale values, we use the training set to avoid leakage of the test set.

Models and training. The NAMs are implemented with PyTorch [24] and
use multi-target regression with K = 2 to model both metrics simultaneously.
The networks are trained using mini-batch gradient descent using the AdamW
optimizer [18]. Furthermore, we perform hyperparameter optimization using a
Tree-structured Parzen Estimator [5] to maximize the R2 scores [13] of the
model. We train 256 different models for both targets, force proxy and tool-
path length and rank models based on their R2 scores. The best ones predict
the normalized targets with a mean absolute error (MAE) [13] of 0.24 and 0.13,
respectively.

4.4 Discussion

We demonstrate the usefulness of the NAMs in Fig. 1, where we show the im-
portance of each CAM parameter on the different target quantities. As can be
seen clearly, different parameters influence the quantities of interest differently.
For instance, the tool diameter has a more significant impact on the force due
to increased surface area but has a vanishing impact on the path length due to
a constant layer distance.Examples of the shape functions underlying the mod-
els are depicted in Fig. 2. We show the mean of the shape in blue with the 1σ
standard deviation depicted by the shaded area and computed over the best ten
runs. The sensitivity in red is computed per individual run, then averaged. Here
the shaded region shows 1σ standard deviation as the error propagation makes
the signal noisy. We can see the different influences of the parameters on the
final target metrics due to the different shape functions. At the same time, the
sensitivity dependence is similar in shape but not magnitude.

5 Conclusion

The application of interpretable AI models to manufacturing processes enables
new insights during the design process. We showed that by using NAMs, we can
understand detailed parameter influences of a CAM design system, which subse-
quently can be used for guided design exploration, uncertainty assessments, and
sensitivity analyses. We demonstrated the power of NAMs using a blisk design
and showed how we can predict toolpath length and tool force simultaneously
while also extracting the sensitivities of the metrics w.r.t. these parameters using
the differentiable nature of neural networks.

We also highlight that the method is use-case agnostic and can be applied to
all industrial applications that leverage CAM to improve the manufacturing pro-
cess. We hypothesize that it will speed up the design process by enabling power
users and users with limited domain knowledge to better and faster understand
the simulation tools and their input settings.



Future work will extend the NAM framework to include higher-order in-
teractions and investigate the use of uncertainty metrics for automated design
optimization using Bayesian learning techniques. Moreover, we are interested in
the automation and integration of such tools into the engineering design process.

Acknowledgment. We kindly acknowledge funding by the German Federal
Ministry of Education and Research (BMBF) within the project ”CAM2030: En-
twicklung einer innovativen Lösung für das Advanced Systems Engineering der
computergestützten Prozessplanung der Zukunft” (#02J19B080, #02J19B082,
#02J19B084).

Contributions. KD and JSO designed the experiments and NAMs and per-
formed the analysis. AF and MF built the experimentation framework and sim-
ulation environment. VR provided the blisk setup. SD and JSO coordinated and
oversaw the project. All authors contributed to the manuscript.

References

1. Agarwal, R., Frosst, N., Zhang, X., Caruana, R., Hinton, G.E.: Neural Additive
Models: Interpretable Machine Learning with Neural Nets. arXiv (2020)

2. Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., Lazoglu, I.:
Virtual process systems for part machining operations. CIRP Annals 63(2), 585–
605 (2014)

3. Belbute-Peres, F.d.A., Economon, T.D., Kolter, J.Z.: Combining Differentiable
PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. arXiv (2020)

4. Benouamer, M.O., Michelucci, D.: Bridging the gap between csg and brep via a
triple ray representation. In: Proceedings of the fourth ACM symposium on Solid
modeling and applications, pp. 68–79 (1997)

5. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Wein-
berger (eds.) Advances in Neural Information Processing Systems, vol. 24. Cur-
ran Associates, Inc. (2011). URL https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

6. Boess, V., Ammermann, C., Niederwestberg, D., Denkena, B.: Contact zone analy-
sis based on multidexel workpiece model and detailed tool geometry representation.
Procedia CIRP 4, 41–45 (2012)

7. Boz, Y., Erdim, H., Lazoglu, I.: A comparison of solid model and three-orthogonal
dexelfield methods for cutter-workpiece engagement calculations in three-and five-
axis virtual milling. The International Journal of Advanced Manufacturing Tech-
nology 81(5), 811–823 (2015)

8. Brandstetter, J., Worrall, D., Welling, M.: Message Passing Neural PDE Solvers.
arXiv (2022)

9. Cao, L., Zhang, C., Joachims, T., Webb, G., Margineantu, D.D., Williams, G.,
Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible
Models for HealthCare. Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining pp. 1721–1730 (2015)

10. Flyte: Flyte: The Workflow Automation Platform for Complex, Mission-Critical
Data and Machine Learning Processes at Scale (2022). URL https://github.com/
flyteorg/flyte

https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://github.com/flyteorg/flyte
https://github.com/flyteorg/flyte


11. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning. arXiv (2015)

12. Gong, X., Feng, H.Y.: Cutter-workpiece engagement determination for general
milling using triangle mesh modeling. Journal of Computational Design and En-
gineering 3(2), 151–160 (2016)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics (2009)

14. Karuppusamy, N.S., Kang, B.Y.: Minimizing airtime by optimizing tool path in
computer numerical control machine tools with application of A* and genetic al-
gorithms. Advances in Mechanical Engineering 9(12), 1687814017737,448 (2017)

15. Kim, M., Choi, H.S., Kim, J.: Higher-order Neural Additive Models: An Inter-
pretable Machine Learning Model with Feature Interactions. arXiv (2022)

16. Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D., Rastogi, R., Chen,
T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System. arXiv pp. 785–794
(2016)

17. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.,
Anandkumar, A.: Neural Operator: Graph Kernel Network for Partial Differential
Equations. arXiv (2020)

18. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR
abs/1711.05101 (2017). URL http://arxiv.org/abs/1711.05101

19. Lötzsch, W., Ohler, S., Otterbach, J.S.: Learning the Solution Operator of Bound-
ary Value Problems using Graph Neural Networks. arXiv (2022)

20. Martin, P.: Kubernetes (2021)
21. Merkel, D.: Docker: Lightweight linux containers for consistent development and

deployment. Linux J. 2014(239) (2014)
22. Narooei, K.D., Ramli, R.: Application of Artificial Intelligence Methods of Tool

Path Optimization in CNC Machines: A Review. Research Journal of Applied
Sciences, Engineering and Technology 8(6), 746–754 (2014)

23. Ohler, S., Brady, D., Lötzsch, W., Fleischhauer, M., Otterbach, J.S.: Towards
Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Net-
works. arXiv (2022)

24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv
(2019)

25. Pezer, D.: Efficiency of Tool Path Optimization Using Genetic Algorithm in Rela-
tion to the Optimization Achieved with the CAM Software. Procedia Engineering
149, 374–379 (2016)

26. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., Battaglia, P.W.: Learning Mesh-
Based Simulation with Graph Networks. arXiv (2020)

27. Tsagaris, A., Mansour, G.: Path planning optimization for mechatronic systems
with the use of genetic algorithm and ant colony. IOP Conference Series: Materials
Science and Engineering 564(1), 012,051 (2019)

28. Yadan, O.: Hydra - a framework for elegantly configuring complex applications.
Github (2019). URL https://github.com/facebookresearch/hydra

29. Zuperl, U., Cus, F.: Optimization of cutting conditions during cutting by using
neural networks. Robotics and Computer-Integrated Manufacturing 19(1-2), 189–
199 (2003)

http://arxiv.org/abs/1711.05101
https://github.com/facebookresearch/hydra

	NAM-CAM: Neural-Additive Models for Semi-Analytic Descriptions of CAM Simulations

